

Diploma Programme

Mathematical studies SL formula booklet

For use during the course and in the examinations First examinations 2014

Edited in 2015 (version 2)

Contents

Prior learning	2
Topics	3
Topic 1—Number and algebra	3
Topic 2—Descriptive statistics	3
Topic 3—Logic, sets and probability	4
Topic 5—Geometry and trigonometry	5
Topic 6—Mathematical models	6
Topic 7—Introduction to differential calculus	6

Prior learning

5.0	Area of a parallelogram	$A = b \times h$, where b is the base, h is the height
	Area of a triangle	$A = \frac{1}{2}(b \times h)$, where <i>b</i> is the base, <i>h</i> is the height
	Area of a trapezium	$A = \frac{1}{2}(a+b)h$, where <i>a</i> and <i>b</i> are the parallel sides, <i>h</i> is the height
	Area of a circle	$A = \pi r^2$, where <i>r</i> is the radius
	Circumference of a circle	$C = 2\pi r$, where <i>r</i> is the radius
	Distance between two points (x_1, y_1) and (x_2, y_2)	$d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$
	Coordinates of the midpoint of a line segment with endpoints (x_1, y_1) and (x_2, y_2)	$\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$

Topics

Topic I—Number and algebra

1.2	Percentage error	$\varepsilon = \left \frac{v_{\rm A} - v_{\rm E}}{v_{\rm E}} \right \times 100\%, \text{ where } v_{\rm E} \text{ is the exact value and } v_{\rm A} \text{ is the approximate value of } v$
1.7	The <i>n</i> th term of an arithmetic sequence	$u_n = u_1 + (n-1)d$
	arithmetic sequence	$S_n = \frac{n}{2} (2u_1 + (n-1)d) = \frac{n}{2} (u_1 + u_n)$
1.8	The <i>n</i> th term of a geometric sequence	$u_n = u_1 r^{n-1}$
	The sum of <i>n</i> terms of a geometric sequence	$S_n = \frac{u_1(r^n - 1)}{r - 1} = \frac{u_1(1 - r^n)}{1 - r}, \ r \neq 1$
1.9	Compound interest	$FV = PV \times \left(1 + \frac{r}{100k}\right)^{kn}$, where FV = future value, PV = present value, n = number of years, k = number of compounding periods per year, $r\%$ = nominal annual rate of interest
		per year, 770 - norminal annual rate of interest

Topic 2—Descriptive statistics

2.5	Mean of a set of data	$\overline{x} = \frac{\sum_{i=1}^{k} f_i x_i}{n}$, where $n = \sum_{i=1}^{k} f_i$
2.6	Interquartile range	$IQR = Q_3 - Q_1$

Topic 3—Logic, sets and probability

			•		•		•			
3.3	Truth tables	p	q	$\neg p$	$p \wedge q$	$p \lor q$	$p \lor q$	$p \Rightarrow q$	$p \Leftrightarrow q$	
		Т	Т	F	Т	Т	F	Т	Т	
		Т	F	F	F	Т	Т	F	F	
		F	Т	Т	F	Т	Т	Т	F	
		F	F	Т	F	F	F	Т	Т	
3.6	Probability of an event <i>A</i> Complementary events	P(A) = $P(A') =$			tcomes of outco	<u>in <i>A</i></u> mes				
3.7	Combined events Mutually exclusive events	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $P(A \cap B) = 0$								
	Independent events	$P(A \cap B) = P(A) P(B)$								
	Conditional probability	$P(A B) = \frac{P(A \cap B)}{P(B)}$								

5.1	Equation of a straight line	y = mx + c; ax + by + d = 0
	Gradient formula	$m = \frac{y_2 - y_1}{x_2 - x_1}$
5.3	Sine rule	$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$
	Cosine rule	$a^{2} = b^{2} + c^{2} - 2bc \cos A; \cos A = \frac{b^{2} + c^{2} - a^{2}}{2bc}$
	Area of a triangle	$A = \frac{1}{2}ab\sin C$, where a and b are adjacent sides, C is the included angle
5.5	Area of the curved surface of a cylinder	$A = 2\pi rh$, where r is the radius, h is the height
	Surface area of a sphere	$A = 4\pi r^2$, where <i>r</i> is the radius
	Area of the curved surface of a cone	$A = \pi r l$, where r is the radius, l is the slant height
	Volume of a pyramid	$V = \frac{1}{3}Ah$, where <i>A</i> is the area of the base, <i>h</i> is the vertical height
	Volume of a cuboid	$V = l \times w \times h$, where <i>l</i> is the length, <i>w</i> is the width, <i>h</i> is the height
	Volume of a cylinder	$V = \pi r^2 h$, where <i>r</i> is the radius, <i>h</i> is the height
	Volume of a sphere	$V = \frac{4}{3}\pi r^3$, where <i>r</i> is the radius
	Volume of a cone	$V = \frac{1}{3}\pi r^2 h$, where <i>r</i> is the radius, <i>h</i> is the vertical height
	Volume of a prism	V = Ah, where A is the area of cross-section, h is the height

Topic 5—Geometry and trigonometry

Topic 6—Mathematical models

$y = ax^2 + bx + c$

Topic 7—Introduction to differential calculus

7.2	Derivative of <i>ax</i> ^{<i>n</i>}	$f(x) = ax^n \implies f'(x) = nax^{n-1}$
	Derivative of a sum	$f(x) = ax^{n}, g(x) = bx^{m} \implies f'(x) + g'(x) = nax^{n-1} + mbx^{m-1}$