Linear Programming 2

1)

Peter wants to plant x plum trees and y apple trees.
He wants at least 3 plum trees and at least 2 apple trees.
(a) Write down one inequality in x and one inequality in y to represent these conditions.
Answer(a)
(b) There is space on his land for no more than 9 trees.

Write down an inequality in x and y to represent this condition.

> Answer(b)
(c) Plum trees cost $\$ 6$ and apple trees cost $\$ 14$.

Peter wants to spend no more than $\$ 84$.
Write down an inequality in x and y, and show that it simplifies to $3 x+7 y \leqslant 42$. Answer(c)
(d) On the grid, draw four lines to show the four inequalities and shade the unwanted regions.

(e) Calculate the smallest cost when Peter buys a total of 9 trees.

Linear Programming 2

3)

The region \boldsymbol{R} contains points which satisfy the inequalities

$$
y \leqslant \frac{1}{2} x+4, \quad y \geqslant 3 \quad \text { and } \quad x+y \geqslant 6
$$

On the grid, label with the letter \boldsymbol{R} the region which satisfies these inequalities.
You must shade the unwanted regions.
4) Pablo plants x lemon trees and y orange trees.
(a) (i) He plants at least 4 lemon trees.

Write down an inequality in x to show this information.
Answer(a)(i)
(ii) Pablo plants at least 9 orange trees.

Write down an inequality in y to show this information.

> Answer(a)(ii)
(iii) The greatest possible number of trees he can plant is 20 .

Write down an inequality in x and y to show this information.
Answer(a)(iii)
(b) Lemon trees cost $\$ 5$ each and orange trees cost $\$ 10$ each.

The maximum Pablo can spend is $\$ 170$.
Write down an inequality in x and y and show that it simplifies to $x+2 y \leqslant 34$.
Answer (b)
(c) (i) On the grid opposite, draw four lines to show the four inequalities and shade the unwanted region.

4) continued

(ii) Calculate the smallest cost when Pablo buys a total of 20 trees.
5)

(a) Draw the lines $y=2, x+y=6$ and $y=2 x$ on the grid above.
(b) Label the region R which satisfies the three inequalities

$$
\begin{equation*}
x+y \geqslant 6, \quad y \geqslant 2 \quad \text { and } \quad y \leqslant 2 x . \tag{1}
\end{equation*}
$$

6)

The region R is bounded by three lines.
Write down the three inequalities which define the region R.

Linear Programming 2

7)

Mr Chang hires x large coaches and y small coaches to take 300 students on a school trip. Large coaches can carry 50 students and small coaches 30 students.
There is a maximum of 5 large coaches.
(a) Explain clearly how the following two inequalities satisfy these conditions.
(i) $x \leqslant 5$
Answer(a)(i)
(ii) $5 x+3 y \geqslant 30$

Answer(a)(ii)

Mr Chang also knows that $x+y \leqslant 10$.
(b) On the grid, show the information above by drawing three straight lines and shading the unwanted regions.

Linear Programming 2

(c) A large coach costs $\$ 450$ to hire and a small coach costs $\$ 350$.
(i) Find the number of large coaches and the number of small coaches that would give the minimum hire cost for this school trip.

Answer(c)(i) Large coaches

Small coaches

(ii) Calculate this minimum cost.
8) Hassan stores books in large boxes and small boxes.

Each large box holds 20 books and each small box holds 10 books.
He has x large boxes and y small boxes.
(a) Hassan must store at least 200 books.

Show that $2 x+y \geqslant 20$.
Answer(a)
(b) Hassan must not use more than 15 boxes.

He must use at least 3 small boxes.
The number of small boxes must be less than or equal to the number of large boxes.
Write down three inequalities to show this information.

Answer(b)
(c) On the grid, show the information in part (a) and part (b) by drawing four straight lines and shading the unwanted regions.

Linear Programming 2

8) continued
(d) A large box costs $\$ 5$ and a small box costs $\$ 2$.
(i) Find the least possible total cost of the boxes.
Answer(d)(i) \$
(ii) Find the number of large boxes and the number of small boxes which give this least possible cost.

$$
\begin{array}{r}
\text { Answer(d)(ii) Number of large boxes }= \\
\text { Number of small boxes }=
\end{array}
$$

