1)

(a) One of the lines in the diagram is labelled $y=m x+c$.

Find the values of m and c.

Answer(a) m=

$$
c=
$$

(b) Show, by shading all the unwanted regions on the diagram, the region defined by the inequalities

$$
x \geqslant 1, \quad y \leqslant m x+c, \quad y \geqslant x+2 \quad \text { and } \quad y \geqslant 4 .
$$

Write the letter \mathbf{R} in the region required.

Linear Programming 1

2)

By shading the unwanted parts of the grid above, find and label the region R which satisfies the following three inequalities

$$
\begin{equation*}
y \geqslant 3, \quad y \geqslant 5 x \quad \text { and } \quad x+y \leqslant 6 \tag{3}
\end{equation*}
$$

3)

(a) \quad The shaded area inside the pentagon is defined by 5 inequalities.

One of these inequalities is $y \leqslant \frac{1}{2} x+4$.

Find the other 4 inequalities.
4)

A new school has x day students and y boarding students.
The fees for a day student are $\$ 600$ a term.
The fees for a boarding student are $\$ 1200$ a term.
The school needs at least $\$ 720000$ a term.
(a) Show that this information can be written as $x+2 y \geqslant 1200$.

Answer (a)
(b) The school has a maximum of 900 students.

Write down an inequality in x and y to show this information.
Answer(b)
(c) Draw two lines on the grid below and write the letter \mathbf{R} in the region which represents these two inequalities.

(d) What is the least number of boarding students at the school?
5)

(a) Draw the three lines $y=4, \quad 2 x-y=4$ and $x+y=6$ on the grid above.
(b) Write the letter R in the region defined by the three inequalities below.
$y \leqslant 4$
$2 x-y \geqslant 4$
$x+y \geqslant 6$
6)

By shading the unwanted regions of the grid above, find and label the region R which satisfies the following four inequalities.

$$
\begin{equation*}
y \geqslant 2 \quad x+y \geqslant 6 \quad y \leqslant x+4 \quad x+2 y \leqslant 18 \tag{4}
\end{equation*}
$$

7)

Find the three inequalities which define the shaded region on the grid.

Linear Programming 1

8) A company has a vehicle parking area of $1200 \mathrm{~m}^{2}$ with space for x cars and y trucks.

Each car requires $20 \mathrm{~m}^{2}$ of space and each truck requires $100 \mathrm{~m}^{2}$ of space.
(a) Show that $x+5 y \leqslant 60$.

Answer(a)
(b) There must also be space for
(i) at least 40 vehicles,
(ii) at least 2 trucks.

Write down two more inequalities to show this information.

$$
\begin{aligned}
& \text { Answer(b)(i) } \\
& \text { Answer(b)(ii) }
\end{aligned}
$$

(c) One line has been drawn for you.

On the grid, show the three inequalities by drawing the other two lines and shading the unwanted regions.

Linear Programming 1

(d) Use your graph to find the largest possible number of trucks.

Answer (d)
(e) The company charges $\$ 5$ for parking each car and $\$ 10$ for parking each truck.

Find the number of cars and the number of trucks which give the company the greatest possible income.

Calculate this income.

$$
\begin{array}{ll}
\text { Answer(e) } & \text { Number of cars }= \\
& \text { Number of trucks }=
\end{array}
$$

Greatest possible income $=\$$
9)

The diagram shows the lines $y=1, y=x+4$ and $y=4-x$.

On the diagram, label the region \mathbf{R} where $y \geqslant 1, y \geqslant x+4$ and $y \leqslant 4-x$.

