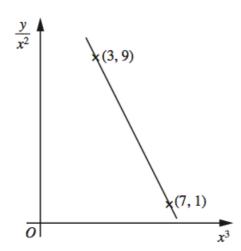
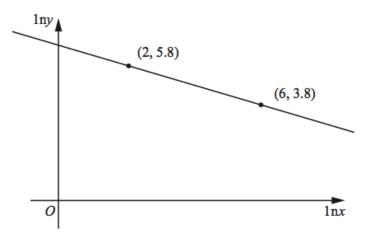

(47 marks)

1)

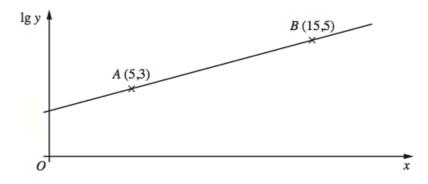


Variables x and y are such that, when y^2 is plotted against $\sec x$, a straight line graph passing through the points (2.4, 1.6) and (1.3, 3.8) is obtained.

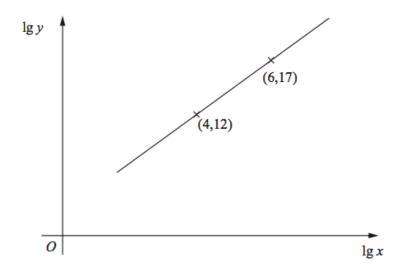
(i) Express y^2 in terms of $\sec x$. [3]


(ii) Hence find the exact value of $\cos x$ when y = 2. [2]

2)

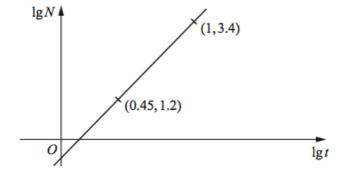

The variables x and y are related so that, when $\frac{y}{x^2}$ is plotted against x^3 , a straight line graph passing through (3, 9) and (7, 1) is obtained. Express y in terms of x. [4]

Variables x and y are such that, when lny is plotted against $\ln x$, a straight line graph passing through the points (2, 5.8) and (6, 3.8) is obtained.


- (i) Find the value of lny when lnx = 0. [2]
- (ii) Given that $y = Ax^b$, find the value of A and of b. [5]

4) The figure shows the graph of a straight line with $\lg y$ plotted against x. The straight line passes through the points A(5,3) and B(15,5).

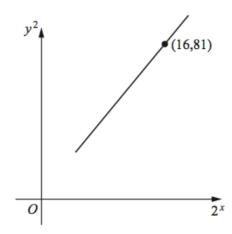
(i) Express $\lg y$ in terms of x. [3]


7 The variables x and y are related so that when lgy is plotted against lgx a straight line graph passing through the points (4, 12) and (6, 17) is obtained.

(i) Express y in terms of x, giving your answer in the form $y = ax^b$. [6]

(ii) Find the value of x when y = 300. [2]

Variables t and N are such that when 1g N is plotted against 1g t, a straight line graph passing through the points (0.45, 1.2) and (1, 3.4) is obtained.

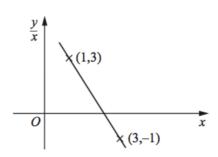


(i) Express the equation of the straight line graph in the form $\lg N = m \lg t + \lg c$, where m and c are constants to be found. [4]

(ii) Hence express N in terms of t. [1]

7)

Variables x and y are such that, when y^2 is plotted against 2^x , a straight line graph is obtained. This line has a gradient of 5 and passes through the point (16,81).


(i) Express y^2 in terms of 2^x .

[3]

(ii) Find the value of x when y = 6.

[3]

8)

The variables x and y are related in such a way that when $\frac{y}{x}$ is plotted against x a straight line is obtained, as shown in the graph. The line passes through the points (1, 3) and (3, -1).

(i) Express y in terms of x.

[4]

(ii) Find the value of x and of y such that $\frac{y}{x} = -9$.

[2]