Linear eq P1 MS

0 min
0 marks

1.

(a) line passes through $(-2,0)$
(A1)
(A1)
(A1)
(A1) (C4)
(b) $y-0=-3(x+2)$ or $3 x+y=3(-2)+1(0)$ or $y=-3 x+c$ etc $3 x+y=-6$ (or equivalent)
(M1)
(A1)(A1)(A1) (C4)

Note: Award (C4) ft for $y=-3 x+$ candidate's y-intercept (or equivalent).
Otherwise award:
(A1) for y with $=$ in a linear equation,
(A1) for $y=-3 x$ or $y+3 x$ seen or for $m=-3$
(A1) for candidate's y-intercept included in a linear expression.
Do not ft candidate's gradient if it is wrong in the diagram, no mark for stand alone $-3 x$
2. (a) $0+2 y=12$ or $x+2(0)=12$
$\mathrm{P}(0,6) \quad$ (accept $x=0, y=6$)
$\mathrm{Q}(12,0) \quad$ (accept $x=12, y=0)$
(A1) (C3)
Notes: Award (M1) for setting either value to zero.
Missing coordinate brackets receive (A0) the first time this occurs. Award $(A 0)(A 1)(f t)$ for $P(0,12)$ and $Q(6,0)$.
(b) $x+2(x-3)=12$
(M1)
$(6,3) \quad($ accept $x=6, y=3)$
(A1)(A1) (C3)
Note: (A1) for each correct coordinate.
Missing coordinate brackets receive (AO)(A1) if this is the first time it occurs.
3. (a) gradient $=\frac{-4}{3}$ or -1.33 (3 s.f.)
(A1) (C1)
(b) $y=\frac{-4}{3} x+4$

OR $4 x+3 y-12=0$
OR equivalent form
Note: the y-intercept must be 4, allow follow through from part (a)
(c) $y=\frac{-4}{3} x-4$

Note: award (M1) for y-intercept as -4

$$
\begin{equation*}
4 x+3 y+12=0 \text { or } \frac{4}{3} x+y+4=0 \tag{A1}
\end{equation*}
$$

4. (a) -2
(A1) (C1)
Note: Accept $(0,-2)$
(b) $-\frac{1}{2}$
(A1) (C1)
(c) 2
(A1)(ft) (C1)
Note: Follow through from their answer to part (b).
(d) $y=2 x+c($ can be implied $)$
$7=2 \times 3+c$
(M1)
$c=1$
$y=2 x+1$
Notes: Award (M1) for substitution of (3, 7), (A1)(ft) for c.
Follow through from their answer to part (c).

OR

$$
\begin{equation*}
y-7=2(x-3) \tag{M1}
\end{equation*}
$$

Note: Award (M1) for substitution of their answer to part (c), (M1) for substitution of (3, 7).
$2 x-y+1=0$ or $-2 x+y-1=0$
(A1)(ft) (C3)
Note: Award (A1)(ft) for their equation in the stated form.
5. (a) $m(A B)=\frac{-3-3}{7-4}=-2$
(M1)(A1) (C2)
Note: Award (M1) for attempt to substitute into correct gradient formula.
(b) (i) $\quad m(\mathrm{AC})=\frac{1}{2}$
(ii) $\frac{p-3}{0.5-4}=\frac{1}{2}$ (or equivalent method)
(M1)(A1)(ft)
Note: Award (M1) for equating gradient to $\frac{1}{2}$. (A1) for correct substitution.

$$
\begin{equation*}
p=1.25 \tag{A1}
\end{equation*}
$$

6. \quad (a) \quad Gradient $=\frac{(5-1)}{(4-2)}$

Note: Award (M1) for correct substitution in the gradient formula.

$$
\begin{equation*}
=2 \tag{A1}
\end{equation*}
$$

(b) \quad Midpoint $=(3,3)($ accept $x=3, y=3)$
(c) \quad Gradient of perpendicular $=-\frac{1}{2}$
(A1)(ft)
(A1)(ft)
OR
$y-3=-0.5(x-3)$
(A1)(A1)(ft)
Note: Award (A1) for -0.5, (A1) for both threes.
OR
$2 y+x=9$
(A1)(A1)(ft) (C3)
Note: Award (A1) for 2, (Al) for 9.
7. (a) $4 y=-x-34$ or similar rearrangement

Gradient $=-\frac{1}{4}$
(b) $\quad m=4$

Note: (Al) Change of sign (A1) Use of reciprocal
(A1)(ft)
(A1)(ft) (C2)
(c) Reasonable attempt to solve equations simultaneously $(-2,-8)$

Note: Accept $x=-2 y=-8$
Award (A0) if brackets not included.
(M1)
(A1)(ft) (C2)
8. (a) $y=-x+2$ or $x+y=2$ or $x+y-2=0$
(b) Midpoint M: $\left(\frac{0+2}{2}, \frac{2+0}{2}\right)=(1,1)$
gradient $=1$
$1=1(1)+(b) \Rightarrow b=0$
$y=x$
(A1)

