IB Questionbank Mathematical Studies 3rd edition

## Linear eq P1 MS



1.



| (a) | line passes through (-2, 0)                                      | (A1)      |
|-----|------------------------------------------------------------------|-----------|
|     | line is straight                                                 | (A1)      |
|     | negative gradient (line must be straight for mark to be awarded) | (A1)      |
|     | correct gradient (line must be straight for mark to be awarded)  | (A1) (C4) |
|     |                                                                  |           |

| (b) | y - 0 = -3(x + 2) or $3x + y = 3(-2) + 1(0)$ or $y = -3x + c$ etc                                                                                                                                                                                                                                                                       | (M1)             |      |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------|
|     | 3x + y = -6 (or equivalent)                                                                                                                                                                                                                                                                                                             | (A1)(A1)(A1)     | (C4) |
|     | Note: Award (C4) ft for $y = -3x + candidate's y equivalent).$<br>Otherwise award:<br>(A1) for y with = in a linear equation,<br>(A1) for $y = -3x$ or $y + 3x$ seen or for $m = -3$<br>(A1) for candidate's y-intercept included in a lin<br><b>Do not</b> ft candidate's gradient if it is wrong in the<br>mark for stand alone $-3x$ | near expression. |      |

[8]

| 2. | (a) | 0 + 2y = 12 or $x + 2(0) = 12$ |                                                     | (M1)      |  |
|----|-----|--------------------------------|-----------------------------------------------------|-----------|--|
|    |     | P(0, 6)                        | (accept $x = 0, y = 6$ )                            | (A1)      |  |
|    |     | Q(12,0)                        | $(accept \ x = 12, \ y = 0)$                        | (A1) (C3) |  |
|    |     |                                | Notes: Award (M1) for setting either value to zero. |           |  |

Missing coordinate brackets receive (A0) the first time this occurs. Award (A0)(A1)(ft) for P(0,12) and Q(6, 0).

(b) 
$$x + 2(x - 3) = 12$$
 (M1)  
(6, 3) (accept  $x = 6, y = 3$ ) (A1)(A1) (C3)

*Note:* (A1) for each correct coordinate. *Missing coordinate brackets receive (A0)(A1) if this is the first time it occurs.* 

[6]

3. (a) gradient = 
$$\frac{-4}{3}$$
 or -1.33(3 s.f.) (A1) (C1)

(b) 
$$y = \frac{-4}{3}x + 4$$
 (A1) (C1)

**OR** 4x + 3y - 12 = 0**OR** equivalent form

*Note: the y-intercept must be 4, allow follow through from part (a)* 

(c) 
$$y = \frac{-4}{3}x - 4$$
 (M1)

*Note: award* (*M1*) *for y-intercept as* –4

$$4x + 3y + 12 = 0 \text{ or } \frac{4}{3}x + y + 4 = 0 \tag{A1}$$

| ſ | 41 |
|---|----|
|   |    |

**4.** (a) -2 (A1) (C1)

(b) 
$$-\frac{1}{2}$$
 (A1) (C1)

(d) 
$$y = 2x + c$$
 (can be implied)  
 $7 = 2 \times 3 + c$  (M1)  
 $c = 1$  (A1)(ft)  
 $y = 2x + 1$ 

*Notes:* Award (M1) for substitution of (3, 7), (A1)(ft) for c. Follow through from their answer to part (c).

## OR

$$y-7 = 2(x-3)$$
 (M1)(M1)  
**Note:** Award (M1) for substitution of their answer to part (c),  
(M1) for substitution of (3, 7).

$$2x - y + 1 = 0 \text{ or } -2x + y - 1 = 0$$
(A1)(ft) (C3)
Note: Award (A1)(ft) for their equation in the stated form.

[6]

5. (a) 
$$m(AB) = \frac{-3-3}{7-4} = -2$$
 (M1)(A1) (C2)

*Note:* Award (M1) for attempt to substitute into correct gradient formula.

(b) (i) 
$$m(AC) = \frac{1}{2}$$
 (A1)(ft)

(ii) 
$$\frac{p-3}{0.5-4} = \frac{1}{2}$$
 (or equivalent method) (M1)(A1)(ft)  
Note: Award (M1) for equating gradient to  $\frac{1}{2}$ . (A1) for correct  
substitution.  
 $p = 1.25$  (A1)(ft) (C4) [6]

6. (a) Gradient = 
$$\frac{(5-1)}{(4-2)}$$
 (M1)  
Note: Award (M1) for correct substitution in the gradient  
formula.  
= 2 (A1) (C2)

(b) Midpoint = 
$$(3, 3)$$
 (accept  $x = 3, y = 3$ ) (A1) (C1)

(c) Gradient of perpendicular =  $-\frac{1}{2}$  (A1)(ft)  $y = -\frac{1}{2}x + c$  (M1)  $3 = -\frac{1}{2} \times 3 + c$  c = 4.5 y = -0.5x + 4.5 (A1)(ft) **OR** 

$$y-3 = -0.5(x-3)$$
 (A1)(A1)(ft)  
*Note:* Award (A1) for -0.5, (A1) for both threes.

## OR

$$2y + x = 9$$
 (A1)(A1)(ft) (C3)  
Note: Award (A1) for 2, (A1) for 9.

7. (a) 
$$4y = -x - 34$$
 or similar rearrangement (M1)  
Gradient =  $-\frac{1}{4}$  (A1) (C2)

| (b) | m = 4 | (A1)(ft)                                                |               |
|-----|-------|---------------------------------------------------------|---------------|
|     |       | <i>Note:</i> (A1) Change of sign (A1) Use of reciprocal | (A1)(ft) (C2) |
|     |       |                                                         |               |

| (c) | Reasonable attempt to solve equations simultaneously | (M1)          |
|-----|------------------------------------------------------|---------------|
|     | (-2, -8)                                             | (A1)(ft) (C2) |
|     | <i>Note: Accept</i> $x = -2$ $y = -8$                |               |

Award (A0) if brackets not included.

8. (a) 
$$y = -x + 2$$
 or  $x + y = 2$  or  $x + y - 2 = 0$  (A1)

(b) Midpoint M: 
$$\left(\frac{0+2}{2}, \frac{2+0}{2}\right) = (1, 1)$$
 (M1)

gradient = 1

$$1 = 1(1) + (b) \Longrightarrow b = 0$$
  
y = x (A1)

[4]

(A1)

[6]