Kinematics 2

1) A particle travels in a straight line so that, $t \mathrm{~s}$ after passing through a fixed point O, its speed, $v \mathrm{~ms}^{-1}$, is given by $v=8 \cos \left(\frac{t}{2}\right)$.
(i) Find the acceleration of the particle when $t=1$.

The particle first comes to instantaneous rest at the point P.
(ii) Find the distance $O P$.
2) A particle starts from rest at a fixed point O and moves in a straight line towards a point A. The velocity, $v \mathrm{~ms}^{-1}$, of the particle, t seconds after leaving O, is given by $v=6-6 \mathrm{e}^{-3 t}$. Given that the particle reaches A when $t=\ln 2$, find
(i) the acceleration of the particle at A,
(ii) the distance $O A$.
3) A particle moves in a straight line such that its displacement, $s \mathrm{~m}$, from a fixed point O at a time $t \mathrm{~s}$, is given by

$$
\begin{aligned}
& s=\ln (t+1) \text { for } 0 \leqslant t \leqslant 3 \\
& s=\frac{1}{2} \ln (t-2)-\ln (t+1)+\ln 16 \text { for } t>3 .
\end{aligned}
$$

Find
(i) the initial velocity of the particle,
(ii) the velocity of the particle when $t=4$,
(iii) the acceleration of the particle when $t=4$,
(iv) the value of t when the particle is instantaneously at rest,
(v) the distance travelled by the particle in the 4th second.
4) A particle, moving in a straight line, passes through a fixed point O with velocity $14 \mathrm{~ms}^{-1}$. The acceleration, $a \mathrm{~ms}^{-2}$, of the particle, t seconds after passing through O, is given by $a=2 t-9$. The particle subsequently comes to instantaneous rest, firstly at A and later at B. Find
(i) the acceleration of the particle at A and at B,
(ii) the greatest speed of the particle as it travels from A to B,
(iii) the distance $A B$.
5) A particle moves in a straight line, so that, $t \mathrm{~s}$ after leaving a fixed point O, its velocity, $v \mathrm{~m} \mathrm{~s}^{-1}$, is given by

$$
v=p t^{2}+q t+4
$$

where p and q are constants. When $t=1$ the acceleration of the particle is $8 \mathrm{~m} \mathrm{~s}^{-2}$. When $t=2$ the displacement of the particle from O is 22 m . Find the value of p and of q.

