Kinematics 1

1) A particle travels in a straight line so that, t s after passing through a fixed point O, its displacement s m from O is given by $s = \ln(t^2 + 1)$.

(i)	Find the value of t when $s = 5$.	[2]
(ii)	Find the distance travelled by the particle during the third second.	[2]
(iii)	Show that, when $t = 2$, the velocity of the particle is 0.8 ms^{-1} .	[2]
(iv)	Find the acceleration of the particle when $t = 2$.	[3]

2) A particle moves in a straight line so that, at time ts after passing a fixed point O, its velocity is $v \text{ ms}^{-1}$, where

$$v = 6t + 4\cos 2t.$$

Find

(i)	the velocity of the particle at the instant it passes O,	[1]
(ii)	the acceleration of the particle when $t = 5$,	[4]
(iii)	the greatest value of the acceleration,	[1]
(iv)	the distance travelled in the fifth second.	[4]

3)

A particle moves in a straight line so that, t seconds after passing through a fixed point O, its velocity,

$$v \text{ ms}^{-1}$$
, is given by $v = \frac{20}{(2t+4)^2}$. Find
(i) the velocity of the particle at O , [1]
(ii) the acceleration of the particle when $t = 3$, [3]

(iii) the distance travelled by the particle in the first 8 seconds. [4]

4) A particle moves in a straight line such that its displacement, xm, from a fixed point O on the line at time t seconds is given by $x = 12\{\ln(2t+3)\}$. Find

(i)	the value of t when the displacement of the particle from O is 48 m,	[3]
(ii)	the velocity of the particle when $t = 1$,	[3]

(iii) the acceleration of the particle when t = 1. [3]

Kinematics 1

5)

A particle moves in a straight line such that t s after passing through a fixed point O, its velocity, $v \text{ m s}^{-1}$, is given by $v = k \cos 4t$, where k is a positive constant. Find

(i)	the value of t when the particle is first instantaneously at rest,	[1]
(ii)	an expression for the acceleration of the particle t s after passing through O .	[2]
Given that the acceleration of the particle is 12 m s^{-2} when $t = \frac{3\pi}{8}$,		
(iii)	find the value of <i>k</i> .	[2]
Using your value for k,		
(iv)	sketch the velocity-time curve for the particle for $0 \le t \le \pi$,	[2]

- (v) find the displacement of the particle from *O* when $t = \frac{\pi}{24}$. [4]
- 6) A particle moves in a straight line so that t seconds after passing a fixed point O its acceleration, $a \operatorname{ms}^{-2}$, is given by a = 4t 12. Given that its speed at O is $16 \operatorname{ms}^{-1}$, find
 - (i) the values of t at which the particle is stationary, [5]
 - (ii) the distance the particle travels in the fifth second. [5]