Kinematics 1

1) A particle travels in a straight line so that, $t \mathrm{~s}$ after passing through a fixed point O, its displacement $s \mathrm{~m}$ from O is given by $s=\ln \left(t^{2}+1\right)$.
(i) Find the value of t when $s=5$.
(ii) Find the distance travelled by the particle during the third second.
(iii) Show that, when $t=2$, the velocity of the particle is $0.8 \mathrm{~ms}^{-1}$.
(iv) Find the acceleration of the particle when $t=2$.
2) A particle moves in a straight line so that, at time $t \mathrm{~s}$ after passing a fixed point O, its velocity is $v \mathrm{~ms}^{-1}$, where

$$
v=6 t+4 \cos 2 t .
$$

Find
(i) the velocity of the particle at the instant it passes O,
(ii) the acceleration of the particle when $t=5$,
(iii) the greatest value of the acceleration,
(iv) the distance travelled in the fifth second.
3) A particle moves in a straight line so that, t seconds after passing through a fixed point O, its velocity, $v \mathrm{~ms}^{-1}$, is given by $v=\frac{20}{(2 t+4)^{2}}$. Find
(i) the velocity of the particle at O,
(ii) the acceleration of the particle when $t=3$,
(iii) the distance travelled by the particle in the first 8 seconds.
4) A particle moves in a straight line such that its displacement, $x \mathrm{~m}$, from a fixed point O on the line at time t seconds is given by $x=12\{\ln (2 t+3)\}$. Find
(i) the value of t when the displacement of the particle from O is 48 m ,
(ii) the velocity of the particle when $t=1$,
(iii) the acceleration of the particle when $t=1$.

Kinematics 1

5) A particle moves in a straight line such that $t \mathrm{~s}$ after passing through a fixed point O, its velocity, $v \mathrm{~m} \mathrm{~s}^{-1}$, is given by $v=k \cos 4 t$, where k is a positive constant. Find
(i) the value of t when the particle is first instantaneously at rest,
(ii) an expression for the acceleration of the particle $t \mathrm{~s}$ after passing through O.

Given that the acceleration of the particle is $12 \mathrm{~m} \mathrm{~s}^{-2}$ when $t=\frac{3 \pi}{8}$,
(iii) find the value of k.

Using your value for k,
(iv) sketch the velocity-time curve for the particle for $0 \leqslant t \leqslant \pi$,
(v) find the displacement of the particle from O when $t=\frac{\pi}{24}$.
6) A particle moves in a straight line so that t seconds after passing a fixed point O its acceleration, $a \mathrm{~ms}^{-2}$, is given by $a=4 t-12$. Given that its speed at O is $16 \mathrm{~ms}^{-1}$, find
(i) the values of t at which the particle is stationary,
(ii) the distance the particle travels in the fifth second.

