Kinematics 1 Answers

1)

10 (i) $t=\sqrt{\mathrm{e}^{5}-1}$ or $t^{2}+1=\mathrm{e}^{5}$ $t=12.1$
(ii) distance $=\ln 10-\ln 5$

$$
=\ln 2 \text { or } 0.693
$$

(iii) $v=\frac{2 t}{t^{2}+1}, v=0.8$
(iv) $a=\frac{\left(t^{2}+1\right) 2-2 t(2 t)}{\left(t^{2}+1\right)^{2}}$

When $t=2, a=-\frac{6}{25}$, or -0.24
2) (i) 4
(ii) Differentiate v to find an expression for a
$6-8 \sin 2 t$
Substitute $t=5$
10.3 to 10.4
(iii) 14
(iv) Integrate v to find an expression for s
$s=3 t^{2}+2 \sin 2 t$
Use limits 4 and 5
23.9
[2]

M1, A1
[2]

M1, A1

A1
[3]

M1 for $s_{3}-s_{2}$

M1 for attempt to differentiate

M1 for attempt to differentiate a product or quotient
A1 all correct, allow unsimplified
3)
(i) 1.25

B1
(ii) $\quad a=\frac{\mathrm{d} v}{\mathrm{~d} t}=\frac{-80}{(2 t+4)^{3}}$

Substitute 3 into $\frac{\mathrm{d} v}{\mathrm{~d} t}$
-0.08
(iii) $s=\int v \mathrm{~d} t$
$\frac{-10}{2 t+4}$
Uses limits
2
4)
(i) $\begin{aligned} & 48=12 \ln (2 t+3) \\ & 2 t+3=\mathrm{e}^{4} \\ & t=25.8\end{aligned}$
(ii) $x=12 \ln (2 t+3)$
$v=\frac{24}{2 t+3}$
when $t=1, v=4.8$
(iii) $a=-\frac{48}{(2 t+3)^{2}}$
when $t=1, a=-1.92$
5)
(i) $t=\frac{\pi}{8}$
(ii) $a=-4 k \sin 4 t$
(iii) $12=-4 k \sin \frac{3 \pi}{2}$ leading to $k=3$
(iv)

(v) $s=\int_{0}^{\frac{\pi}{24}} 3 \cos 4 t \cdot \mathrm{~d} t$
$=\left[\frac{3}{4} \sin 4 t\right]_{0}^{\frac{\pi}{24}}$ leading to $\frac{3}{8}$

$\begin{aligned} & \text { M1 } \\ & \text { DM1 } \\ & \text { A1 } \end{aligned}$	M1 for attempt to deal with logs
	DM1 for attempt to solve
B1	B1 $\frac{1}{2 t+3}$
B1	B1 24
B1	B1 for 4.8
[3]	
B1	B1 for $\frac{1}{(2 t+3)^{2}}$
\checkmark B1	$\sqrt{ } \mathrm{B} 1$ on '24'
B1	B1 for -1.92
[3]	

[1]
M1, A1
[2]
M1
A1

B1
$\sqrt{ }$ B1
[2]
$\mathrm{M} 1, \sqrt{ } \mathrm{~A} 1$

DM1, A1

M1 for attempt to differentiate

M1 for attempt to substitute into their acceleration equation

B1 for correct shape B1 ft on their value for k

M1 for attempt to integrate Ft on their value for k

DM1 for application of limits or equivalent

M1 for attempt to deal with logs DM1 for attempt to solve

B1 $\frac{1}{2 t+3}$
B1 24
B1 for 4.8

B1 for $\frac{1}{(2 t+3)^{2}}$
B1 for - 1.92
3]

B1	
$\mathrm{M} 1, \mathrm{~A} 1$	M1 for attempt to differentiate
M1	M1 for attempt to substitute into their acceleration equation
A1	
B1	B1 for correct shape
\checkmark B1	B1 ft on their value for k
[2]	
$\mathrm{M} 1, \sqrt{ } \mathrm{~A} 1$	M1 for attempt to integrate
	Ft on their value for k
DM1, A1	DM1 for application of limits or equivalent

6)

(i) $2 t^{2}-12 t+16$
equate to 0 and solve quadratic for 2 values 2 and 4

B1+B1+B1
M1
A1
(ii) $\quad s=\int v \mathrm{~d} t$

M1
A $2,1,0 \sqrt{ }$
DM1
A1

