1. Show that $\int\left(e^{x} \cos x\right) d x=\frac{e^{x}(\sin x+\cos x)}{2}+c$.
[5 marks]
2. Integrate $\int \frac{x}{(x-2)^{3}} d x$ using the substitution $u=x-2$. [4 marks]
3. Evaluate $\int_{1}^{3} \frac{4 x}{(2 x-1)} d x$. [5 marks]
4. a) Find $f(x)$ when $f^{\prime}(x)=\sqrt{3 x-4}$. [3 marks]
b) Find the volume of revolution created when $f(x)$ is rotated through 2π radians about the x-axis and the lines $x=2$ and $x=0$. [3 marks]
5. Let $f(x)=x \sin x$. Integrate the function by parts. [4 marks]
6. The diagram below shows the curve $y=x \ln (x)$.

a) Integrate $y=x \ln (x)$ with respect to x.
[5 marks]
b) Find the area between the x-axis, the lines $x=2$ and $x=4$ and the graph of $y=x \ln (x)$.
[2 marks]
www.ibmaths.com
7. Integrate $\int \frac{d x}{4+x^{2}}$ by using the substitution $x=2 \tan u$.

Show all your working.
[5 marks]
8. A particle is moving in a straight line with velocity given by,
$v(t)=5 t^{2}-9 t+1$, where t is time in seconds and v is metres per second.
a) Find the distance traveled in the first 4 seconds. [4 marks]
b) Find the acceleration at 5 seconds.
[3 marks]
c) Find an expression for the distance traveled, if the initial displacement is 4 metres.
[2 marks]
9. The diagram below show two graphs of $y=\frac{1}{2} x$ and $y=\cos x$.

Find the shaded region shown in the diagram.
[5 marks]

Integration revision

Answers

2. $-\frac{1}{(x-2)}-\frac{1}{(x-2)^{2}}+c$
3. 5.61 units 2
4. a) $\frac{2(3 x-4)^{\frac{3}{2}}}{9}+c$
b) $\frac{240 \pi}{243}$ units 2
5. $\sin x-x \cos x+c$
6. a) $\frac{x^{2} \ln x}{2}-\frac{x^{2}}{4}+c$
b) 5.71 units 2
7. $\frac{1}{2} \arctan \left(\frac{x}{2}\right)+c$
8. a) $\frac{232}{6}$ metres
b) $41 \mathrm{~m} / \mathrm{s}^{-2}$
c) $\mathrm{S}=\frac{5 \mathrm{t}^{3}}{3}-\frac{9 \mathrm{t}^{2}}{2}+\mathrm{t}+4$
9. 0.408 units 2
