Integration Past Paper Questions

1	Find	1
	F III	ı

(a)
$$\int \sin(3x+7)dx,$$

(b)
$$\int e^{-4x} dx$$
.

Working:	
	Answers:
	(a)
	(b)

(Total 4 marks)

- 2. Let $f(x) = (3x + 4)^5$. Find
 - (a) f'(x);
 - (b) $\int f(x) dx$.

Working:	
	Answers:
	Answers.
	(a)
	(b)
	(Total 6 marks)

The	function f is given by $f(x) = 2\sin(5x-3)$.		
(a)	Find $f''(x)$.		
(b)	Write down $\int f(x) dx$.		
			 (Total 6
Th e			 (Total 6
	curve $y = f(x)$ passes through the point (2, 6)		 (Total 6
			 (Total 6
Give	curve $y = f(x)$ passes through the point (2, 6)		 (Total 6
Give	curve $y = f(x)$ passes through the point (2, 6) on that $\frac{dy}{dx} = 3x^2 - 5$, find y in terms of x.		 (Total 6
Give	curve $y = f(x)$ passes through the point (2, 6) on that $\frac{dy}{dx} = 3x^2 - 5$, find y in terms of x.		 (Total 6
Give	curve $y = f(x)$ passes through the point (2, 6) on that $\frac{dy}{dx} = 3x^2 - 5$, find y in terms of x.		 (Total 6
Give	curve $y = f(x)$ passes through the point (2, 6) on that $\frac{dy}{dx} = 3x^2 - 5$, find y in terms of x.	5).	 (Total 6
Give	curve $y = f(x)$ passes through the point (2, 6) on that $\frac{dy}{dx} = 3x^2 - 5$, find y in terms of x.		 (Total 6

er:
(Total 6 m
(Total 6 m $+\frac{1}{1-x}, x < 1.$
$+\frac{1}{1-x}, x < 1.$

It is given that $\frac{dy}{dx} = x^3 + 2x - 1$ and that y = 13 when x = 2.

Find y in terms of x.

6.

7.	Given .	$\int_3^k \frac{1}{x-2}$	$dx = \ln 7,$	find the	value of	` <i>k</i> .
----	---------	--------------------------	---------------	----------	----------	--------------

Working:	
	Answers:

(Total 6 marks)

(a) $\int_1^3 \frac{1}{2} g(x) dx;$	
(b) $\int_{1}^{3} (g(x)+4)dx$.	
Working:	
	Answers:
	(a) (b)
	(Total 6 n
It is given that $\int_{1}^{3} f(x)dx = 5$	
(a) Write down $\int_{1}^{3} 2f(x)dx$	Lv.
	$dx.$ $dx^2 + f(x)dx.$
(a) Write down $\int_{1}^{3} 2f(x)dx$	Lv.
(a) Write down $\int_{1}^{3} 2f(x)dx$	$dx.$ $dx^2 + f(x)dx.$
(a) Write down $\int_{1}^{3} 2f(x)dx$ (b) Find the value of $\int_{1}^{3} (x)dx$	$dx.$ $dx^2 + f(x)dx.$
(a) Write down $\int_{1}^{3} 2f(x)dx$ (b) Find the value of $\int_{1}^{3} (x)dx$	$dx.$ $dx^2 + f(x)dx.$
(a) Write down $\int_{1}^{3} 2f(x)dx$ (b) Find the value of $\int_{1}^{3} (x)dx$	dx = dx + f(x) dx.
(a) Write down $\int_{1}^{3} 2f(x)dx$ (b) Find the value of $\int_{1}^{3} (x)dx$	dx = dx + f(x) dx.
(a) Write down $\int_{1}^{3} 2f(x)dx$ (b) Find the value of $\int_{1}^{3} (x)dx$	dx = dx + f(x) dx.
(a) Write down $\int_{1}^{3} 2f(x)dx$ (b) Find the value of $\int_{1}^{3} (x)dx$	dx = dx + f(x) dx.
(a) Write down $\int_{1}^{3} 2f(x)dx$ (b) Find the value of $\int_{1}^{3} (x)dx$	dx = dx + f(x) dx.

- 10. Let f be a function such that $\int_0^3 f(x) dx = 8$.
 - (a) Deduce the value of
 - (i) $\int_0^3 2f(x) \, \mathrm{d}x;$
 - (ii) $\int_0^3 (f(x)+2) dx.$
 - (b) If $\int_{c}^{d} f(x-2)dx = 8$, write down the value of c and of d.

Working:	
ı	
	Answers:
	(a) (i)
	(ii)
	(b) $c = \dots, d = \dots$ (Total 6 marks)

- 11. (a) Find $\int (1+3 \sin (x+2)) dx$.
 - (b) The diagram shows part of the graph of the function $f(x) = 1 + 3 \sin(x + 2)$. The area of the shaded region is given by $\int_0^a f(x) dx$.

Find the value of a.

Working:	
	Answers:
	(a)
	(b)

12. The diagram shows part of the curve $y = \sin x$. The shaded region is bounded by the curve and the lines y = 0 and $x = \frac{3\pi}{4}$.

Given that $\sin \frac{3\pi}{4} = \frac{\sqrt{2}}{2}$ and $\cos \frac{3\pi}{4} = -\frac{\sqrt{2}}{2}$, calculate the exact area of the shaded region.

· · ·	
Working:	
	Answer:
	(F. 4.1.C.)

(Total 6 marks)

13. The following diagram shows part of the graph of $y = \cos x$ for $0 \le x \le 2\pi$. Regions A and B are shaded.

(a) Write down an expression for the area of A.

(b) Calculate the area of A. (1)

(c) Find the total area of the shaded regions.

(4) (Total 6 marks)

(1)

14.	The	velocity $v \text{ m s}^{-1}$ of a moving body at time t seconds is given by $v = 50 - 10t$.				
	(a)	Find its acceleration in m s ⁻² .				
	(b)	The initial displacement s is 40 metres. Find an expression for s in terms of t .				
		(Total 6 mar	·ks)			
15.	A pa	article moves with a velocity $v \text{ m s}^{-1}$ given by $v = 25 - 4t^2$ where $t \ge 0$.				
	(a)	The displacement, s metres, is 10 when t is 3. Find an expression for s in terms of t .	(6)			
	(b)	Find t when s reaches its maximum value.	(3)			
	(c)	The particle has a positive displacement for $m \le t \le n$. Find the value of m and the value of n .				
		(Total 12 mar	(3) ·ks)			

The velocity v in m s ⁻¹ of a moving body at time t seconds is given by $v = e^{2t-1}$. When the displacement of the body is 10 m. Find the displacement when $t = 1$.	t=0 5.
	 (Total 6 mai

17. A part of the graph of $y = 2x - x^2$ is given in the diagram below.

The shaded region is revolved through 360° about the *x*-axis.

- (a) Write down an expression for this volume of revolution.
- (b) Calculate this volume.

(Total 6 marks)

18. The shaded region in the diagram below is bounded by $f(x) = \sqrt{x}$, x = a, and the x-axis. The shaded region is revolved around the x-axis through 360°. The volume of the solid formed is 0.845π .

Find the value of a.

ı
(Total 6 marks)

19. Find the area between the curve $y = x^2 + x - 6$, the x - axis and the lines x = 0 and x = 3