1)

(i) Find $\int \frac{1}{\sqrt{1+x}} \mathrm{~d} x$.
(ii) Given that $y=\frac{2 x}{\sqrt{1+x}}$, show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{A}{\sqrt{1+x}}+\frac{B x}{(\sqrt{1+x})^{3}}$, where A and B are to be found. [4]
iii) Hence find $\int \frac{x}{(\sqrt{1+x})^{3}} \mathrm{~d} x$ and evaluate $\int_{0}^{3} \frac{x}{(\sqrt{1+x})^{3}} \mathrm{~d} x$.
2)
(a) Find $\int\left(x^{\frac{1}{3}}-3\right)^{2} \mathrm{~d} x$.
(b) (i) Given that $y=x \sqrt{x^{2}+6}$, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(ii) Hence find $\int \frac{x^{2}+3}{\sqrt{x^{2}+6}} \mathrm{~d} x$.
3) (i) Given that $y=x \sqrt{4 x+12}$, show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{k(x+2)}{\sqrt{4 x+12}}$, where k is a constant to be found. [4]
(ii) Hence evaluate $\int_{-2}^{6} \frac{3 x+6}{\sqrt{4 x+12}} \mathrm{~d} x$.
4) (i) Differentiate $x \ln x$ with respect to x.
(ii) Hence find $\int \ln x \mathrm{~d} x$.
5) Evaluate

$$
\begin{equation*}
\int_{0}^{\frac{\pi}{6}} \sin \left(2 x+\frac{\pi}{6}\right) \mathrm{d} x \tag{4}
\end{equation*}
$$

6) Find $\int\left(2+5 x-\frac{1}{(x-2)^{2}}\right) \mathrm{d} x$.
7)

(i) Find $\frac{\mathrm{d}}{\mathrm{d} x}\left(x \mathrm{e}^{3 x}-\frac{\mathrm{e}^{3 x}}{3}\right)$.
(ii) Hence find $\int x \mathrm{e}^{3 x} \mathrm{~d} x$.
8) (a) Find
(i) $\int \frac{12}{(2 x-1)^{4}} \mathrm{~d} x$,
(ii) $\int x(x-1)^{2} \mathrm{~d} x$.
(b) (i) Given that $y=2(x-5) \sqrt{x+4}$, show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{3(x+1)}{\sqrt{x+4}}$.
(ii) Hence find $\int \frac{(x+1)}{\sqrt{x+4}} \mathrm{~d} x$.

Integration 1

