1) $\quad O R$
(i) $\frac{\mathrm{d} y}{\mathrm{~d} x}=8 x-6 x^{2}$

Grad at $A=2$, perp $\operatorname{grad}=-\frac{1}{2}$
At $A, y=2$
Equation of normal: $y-2=-\frac{1}{2}(x-1)$
C ($0,2.5$)
(ii) $B(2,0)$
$A=\frac{1}{2}(2.5+2) 1+\int_{1}^{2} 4 x^{2}-2 x^{3} \mathrm{~d} x$
$=2.25+\left[\frac{4 x^{3}}{3}-\frac{x^{4}}{2}\right]_{1}^{2}$
$=\frac{49}{12}$ or 4.08

M1		M1 for differentiation
M1		M1 for use of $m_{1} m_{2}=-1$
B1		B1 for y coordinate
DM1	DM1 for finding equation of normal	
A1		A1 answer given
	[5]	
B1		B1 for coords of B
M1		M1 for area of trapezium
M1		M1 for attempt to integrate
A1		A1 all integration correct DM1 DM1
A1		

2)

$$
\begin{aligned}
12 \text { OR (i) } y & =x+\cos 2 x \\
\frac{\mathrm{~d} y}{\mathrm{~d} x} & =1-2 \sin 2 x
\end{aligned}
$$

when $\frac{\mathrm{d} y}{\mathrm{~d} x}=0, \sin 2 x=\frac{1}{2}$
leading to $x=\frac{\pi}{12}, \frac{5 \pi}{12}$
(ii) Area $=\int_{\frac{\pi}{12}}^{\frac{5 \pi}{12}} x+\cos 2 x . \mathrm{d} x$
$=\left[\frac{x^{2}}{2}+\frac{1}{2} \sin 2 x\right]_{\frac{\pi}{12}}^{\frac{5 \pi}{12}}$
$=\frac{\pi^{2}}{12}$

M1 for attempt to differentiate

M1 for setting to 0 and attempt to solve
M1 for correct order of operations

M1 for attempt to integrate

A1for each term correct DM1 for correct use of limits (Trig terms cancel out)
3)
(i) $\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}-16 x+16$
B1
equate to 0 and solve 3 term quadratic
M1
$x=4, y=0$
A1 AG
$x=\frac{4}{3} y=9 \frac{13}{27}$ or $\frac{256}{27}$ or 9.48 or 9.5
A1
(ii) integrate M1
$\frac{x^{4}}{4}-\frac{8 x^{3}}{3}+8 x^{2}$
use limits of 4 (and 0)
A1
$21 \frac{1}{3}$ or 21.3
DM1

A1
4)
(i) At $X, y=0, x=16$
$\mathrm{d} y / \mathrm{d} x=\mathrm{x}^{-1 / 2} \quad \times 4 \times 1 / 2 \quad-1$
$(\mathrm{d} y / \mathrm{d} x) \quad=0 \quad \Rightarrow \quad$ at $M, x=4, y=4$
(ii) $\int 4 \sqrt{x} \mathrm{~d} x=x^{3 / 2} \quad \times 4 \times 2 / 3$ or $\times 4 \div 3 / 2 \quad \int(-x) \mathrm{d} x=-x^{2} / 2$
$\left[\frac{8 x^{3 / 2}}{3}-\frac{x^{2}}{2}\right]_{0}^{16}=42^{2 / 3}$

B1 cso
M1 A1
M1 A1

M1 A1 B1
5)
(i) $y=4 \sin 2 x+c$
passes through $\left(\frac{\pi}{4}, 7\right), c=3$
(ii) $5=4 \sin 2 x+3$
$0.5=\sin 2 x$
$x=\frac{\pi}{12}, \frac{5 \pi}{12}$
(iii) $\int_{\frac{\pi}{12}}^{\frac{5 \pi}{12}} 4 \sin 2 x+3 \mathrm{~d} x$
$[-2 \cos 2 x+3 x]_{\frac{\pi}{12}}^{\frac{5 \pi}{12}}$
$=\pi+2 \sqrt{3}$
Shaded area $=\pi+2 \sqrt{3}-\frac{5 \pi}{3}$

$$
(=1.37)
$$

6) 12 EITHER

(i) amplitude $=1$
(ii) period $=6 \pi, 18.8$
(iii) $\sin \left(\frac{x}{3}\right)=\frac{1}{2}, x=\frac{\pi}{2}, \frac{5 \pi}{2}$
(iv) Area under curve
$\int_{\frac{\pi}{2}}^{\frac{5 \pi}{2}}\left(1+\sin \frac{x}{3}\right) \mathrm{d} x=\left[x-3 \cos \frac{x}{3}\right]_{\frac{\pi}{2}}^{\frac{5 \pi}{2}}$
leading to $2 \pi+3 \sqrt{3}$
Area of rectangle $=\left(\frac{5 \pi}{2}-\frac{\pi}{2}\right) \times \frac{3}{2}$

$$
=3 \pi
$$

Shaded area $=3 \sqrt{3}-\pi(2.05)$
Alternative solution: Shaded area
$\int_{\frac{\pi}{2}}^{\frac{5 \pi}{2}}\left(\sin \frac{x}{3}-0.5\right) \mathrm{d} x=\left[-0.5 x-3 \cos \frac{x}{3}\right]_{\frac{\pi}{2}}^{\frac{5 \pi}{2}}$

B1 [1]
B1 [1]
M1
A1, A1

M1
B1, B1

DM1
M1

A1
M1
M1
B1, B1
DM1, A1

M1 for attempt to solve correctly A1 for each (allow degrees here)

M1 for attempt to integrate B1 for $x, \mathrm{~B} 1$ for $-3 \cos \frac{x}{3}$

DM1 for correct use of limits
M1 for attempt at rectangle plus subtraction must be working in radians

M1 for subtraction (must be using radians)
M1 for attempt to integrate
B1 for $-0.5 x, \mathrm{~B} 1$ for $-3 \cos \frac{x}{3}$
DM1 for correct use of limits
7)
(i) $\mathrm{A}(0,6)$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2} \mathrm{e}^{\frac{1}{2} x}$

$$
\text { uses } m_{1} m_{2}=-1
$$

B $(3,0)$
(ii) Integrates for area below curve
$2 \mathrm{e}^{\frac{1}{2} x}+5 x$
uses limits of 0 and x_{B}
$13+2 \mathrm{e}^{1.5}$ or 21.96 or 22 A1
Area rectangle $=3\left(\mathrm{e}^{1.5}+5\right)$ or 28.4(4..) M1
Area $=\mathrm{e}^{1.5}+2$ or 6.45 to 6.5

