SL - Exponents and Logs Questions

49 min
62 marks

1. Solve the equation $9^{x-1}=\left(\frac{1}{3}\right)^{2 x}$.
(Total 4 marks)
2. Solve the equation $4^{3 x-1}=1.5625 \times 10^{-2}$.
(Total 4 marks)
3. If $\log _{a} 2=x$ and $\log _{a} 5=y$, find in terms of x and y, expressions for
(a) $\quad \log _{2} 5$;
(b) $\quad \log _{\mathrm{a}} 20$.
(Total 4 marks)
4. Let $\log _{10} P=x, \log _{10} Q=y$ and $\log _{10} R=z$. Express $\log _{10}\left(\frac{P}{Q R^{3}} \frac{)^{2}}{\frac{1}{!}}\right.$ in terms of x, y and z.
(Total 4 marks)
5. Solve the equation $\log _{9} 81+\log _{9} \frac{1}{9}+\log _{9} 3=\log _{9} x$.
(Total 4 marks)
6. Solve the equation $\log _{27} x=1-\log _{27}(x-0.4)$.
7. Consider the following statements

A: $\quad \log _{10}\left(10^{x}\right)>0$.
B: $\quad-0.5 \leq \cos (0.5 x) \leq 0.5$.
C: $\quad-\pi / 2 \leq \arctan x \leq \pi / 2$.
(a) Determine which statements are true for all real numbers x. Write your answers (yes or no) in the table below.

Statement	(a) Is the statement true for all real numbers x ? (Yes/No)	(b) If not true, example
A		
B		
C		

(b) If a statement is not true for all x, complete the last column by giving an example of one value of x for which the statement is false.(Total 6 marks)
8. Given that $\log _{5} x=y$, express each of the following in terms of y.
(a) $\quad \log _{5} x^{2}$
(b) $\log _{5}\left(\frac{1}{x}\right)$
(c) $\log _{25} x$
(Total 6 marks)
9. The table below shows the marks gained in a test by a group of students.

Mark	1	2	3	4	5
Number of students	5	10	p	6	2

The median is 3 and the mode is 2 . Find the two possible values of p.
(Total 6 marks)
10. Find the exact solution of the equation $9^{2 x}=27^{(1-x)}$.
(Total 6 marks)
11. Let $a=\log x, b=\log y$, and $c=\log z$.

Write $\log \left(\frac{x^{2} \sqrt{y}}{z^{3}} \frac{\square}{\square}\right.$ in terms of a, b and c.
12. (a) Given that $\log _{3} x-\log _{3}(x-5)=\log _{3} A$, express A in terms of x.
(b) Hence or otherwise, solve the equation $\log _{3} x-\log _{3}(x-5)=1$.
(Total 6 marks)

