10.12 Solving Quadratic Equations using the Formula

1. Solve the following equations by using the formula. Give your answers correct to 3 decimal places.

(a)
$$x^2 + 6x + 4 = 0$$

(b)
$$y^2 - 5y + 5 = 0$$

(c)
$$x^2 + 2x - 1 = 0$$

(d)
$$x^2 - 5x + 1 = 0$$

(e)
$$x^2 = -5x - 3$$

(f)
$$y^2 = 10y - 18$$

2. Solve the following equations by using the formula. Give your answers correct to 3 decimal places.

(a)
$$2t^2 - 4t - 3 = 0$$

(b)
$$2y^2 + 3y - 4 = 0$$

(c)
$$2x^2 - 14x + 7 = 0$$

(d)
$$4x^2 - 6 = -7x$$

(e)
$$7 = 3t^2 + 6t$$

(f)
$$5t^2 = 11t + 7$$

3. Bill sets Ben this problem.

"When 2 is added to a certain number, the result is the same as dividing 8 by the number."

Ben uses this equation to solve the problem:

$$x + 2 = \frac{8}{x}$$

Solve this equation, and show that there are two possible solutions to Bill's problem.

4. The surface area of a circular cylinder can be calculated using the formula $A = 2\pi r^2 + 2\pi rh$, where r is the radius and h the height. Find the radius of the cylinder, correct to 2 decimal places, if the cylinder has a surface area of 322π cm² and a height of 10 cm.

5. If the area of the field shown is 26 m^2 , what is the value of x correct to 1 decimal place?

- 6. A cuboid has dimensions (x + 3) cm by (x + 3) cm by 5 cm. If its volume is 555 cm³, find x correct to 2 decimal places.
- 7. The area of a triangular plate is 16 cm². If the base is 1 cm longer than the height, what are the lengths of its base and height? Give your answers correct to 1 decimal place.

8. A picture 8 cm by 3 cm has a border x cm wide all round it. The area of the border is equal to the area of the picture. Find the value of x correct to 2 decimal places.

9. The diagram shows a closed rectangular box whose dimensions are in cm. Given that the area of material used to make the box is 146 cm², find the value of y correct to 2 decimal places.

10. A rectangular photograph, 15 cm by 18 cm, is mounted on a large rectangular piece of card so as to leave a border, x cm wide along both the top and bottom and y cm wide along each side.

The perimeter of the mount is 102 cm. The cost of mounting this photograph is £12.88.

(a) Show that x = 9 - y.

The cost of mounting a photograph is 2 pence per cm² of card.

- (b) Show that (18 + 2y)(15 + 2x) = 644.
- (c) Use the expression for x in part (a) to show that the equation in part (b) can be written as $2y^2 15y + 25 = 0$.
- (d) Solve this equation to determine the possible dimensions of the piece of card.
- 11. (a) Simplify $2a^3 \times 4a^2$
 - (b) Solve the equation $x^2 8x + 10 = 0$
 - (c) Make y the subject of this formula.

$$x\left(2y-3\right)=5(y-2)$$

(d) Solve algebraically these simultaneous equations. Show your method clearly.

$$x + y = 5$$
$$x^2 + 3y^2 = 49$$

(OCR)