
Further Change of Subject

The volume of a cylinder is given by

$$V=\pi r^2 h$$

where r is the base radius and h the height.

- Make r the subject of the formula.
- Find r when $V = 300 \text{ cm}^3$ and h = 5 cm

$$V = \frac{1}{3}\pi r^2 h + \frac{2}{3}\pi r^3$$

Make h the subject of this equation and find h when $V = 300 \text{ cm}^3$ and r = 3 cm.

3. The surface area of a sphere is given by

$$S = 4\pi r^2$$

- (a) Make r the subject of this equation.
- Find r when
- $S = 100 \text{ cm}^2$
- (ii) $S = 200 \text{ cm}^2$

By what factor does the radius change when the surface area is doubled?

Make x the subject of

(a)
$$y = 4x + 2$$

(b)
$$v = 1 - 3x$$

(c)
$$y = mx +$$

$$(d) y = \frac{1}{x+1}$$

(e)
$$y = 1 + \sqrt{2}$$

$$(f) y = \frac{1}{1 + \sqrt{x}}$$

(g)
$$y = \sqrt{\frac{5 x}{a}}$$

$$(h) y = \sqrt{x+1}$$

(i)
$$\frac{1}{y} = \frac{1}{r} + 1$$

(j)
$$\frac{1}{y} = \frac{2}{3} - \frac{1}{x}$$

$$(k) \qquad y = \frac{1}{4} + \frac{1}{x}$$

(d)
$$y = \frac{1}{x+1}$$
 (e) $y = 1 + \sqrt{x}$ (f) $y = \frac{1}{1+\sqrt{x}}$ (g) $y = \sqrt{\frac{5x}{a}}$ (h) $y = \sqrt{x+1}$ (i) $\frac{1}{y} = \frac{1}{x} + 1$ (j) $\frac{1}{y} = \frac{2}{3} - \frac{1}{x}$ (k) $y = \frac{1}{4} + \frac{1}{x}$ (l) $y = \frac{4}{\sqrt{2+x}}$

5. If $\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$, make *u* the subject of this formula.

Find *u* when:

- (a) f = 5 and v = 1 (b) f = 3 and v = -2
- 6. The percentage profit, p, on the sale of an item is given by the formula

$$p = \frac{100(s-c)}{c}$$

where s is the selling price and c is the cost price.

Express c in terms of s and p.

(MEG)

7. Students conduct an experiment to find g, the acceleration due to gravity.

They measure the time, T seconds, for one complete swing of a pendulum of length L centimetres.

The formula for g is

$$g = \frac{4\pi^2 L}{T^2}$$

Find g when L = 39.24 and T = 1.26.

Take $\pi = 3.142$ or use the π button on your calculator.

(b) Rearrange the formula to express T in terms of L, π and g.

(SEG)

8. A star shape is made by cutting quadrants of a circle from a square of side 2r.

Show that the shaded area is given by the formula

$$A = 4r^2 - \pi r^2$$

Rearrange the formula to make r the subject.

(AQA)