IGCSE - Graphs/tangents/gradients -2

Oct 03 Paper 4

Answer the whole of this question on a sheet of graph paper.

t	0	1	2	3	4	5	6	7
f(t)	0	25	37.5	43.8	46.9	48.4	49.2	49.6

(a) Using a scale of 2 cm to represent 1 unit on the horizontal t-axis and 2 cm to represent 10 units on the y-axis, draw axes for $0 \le t \le 7$ and $0 \le y \le 60$.

Draw the graph of the curve y = f(t) using the table of values above.

[5]

- (b) $f(t) = 50(1-2^{-t})$.
 - (i) Calculate the value of f(8) and the value of f(9).

[2]

(ii) Estimate the value of f(t) when t is large.

[1]

- (c) (i) Draw the tangent to y = f(t) at t = 2 and use it to calculate an estimate of the gradient of the curve at this point.
 - (ii) The function f(t) represents the speed of a particle at time t. Write down what quantity the gradient gives.

[1]

(d) (i) On the same grid, draw y = g(t) where g(t) = 6t + 10, for $0 \le t \le 7$.

[2]

(ii) Write down the range of values for t where f(t) > g(t).

[2]

(iii) The function g(t) represents the speed of a second particle at time t. State whether the first or second particle travels the greater distance for $0 \le t \le 7$. You must give a reason for your answer.

[2]

May 04 Paper 4

Answer all of this question on a sheet of graph paper.

(a)
$$f(x) = x^2 - x - 3$$
.

x	-3	-2	1	0	1	2	3	4
f(x)	p	3	-1	-3	q	-1	3	r

(i) Find the values of p, q and r.

[3]

(ii) Draw the graph of y = f(x) for $-3 \le x \le 4$. Use a scale of 1 cm to represent 1 unit on each axis.

[4]

(iii) By drawing a suitable line, estimate the gradient of the graph at the point where x = -1.

[3]

(b)
$$g(x) = 6 - \frac{x^3}{3}$$
.

x	-2	-1	0	1	2	3
g(x)	8.67	и	ν	5.67	3.33	-3

(i) Find the values of u and v.

[2]

(ii) On the same grid as part (a) (ii) draw the graph of y = g(x) for $-2 \le x \le 3$.

[4]

(c) (i) Show that the equation f(x) = g(x) simplifies to $x^3 + 3x^2 - 3x - 27 = 0$.

[1]

(ii) Use your graph to write down a solution of the equation $x^3 + 3x^2 - 3x - 27 = 0$.

[1]