IGCSE - Graphs/tangents/gradients -1

May 02 Paper 4

5 Answer the whole of this question on a sheet of graph paper.

Dimitra stands by a river and watches a fish.

The distance (d metres) of the fish from Dimitra after t minutes is given by

$$d = (t+1)^{2} + \frac{48}{(t+1)} - 20.$$

Some values for d and t are given in the table below.

	ŧ	0	0.5	1	1.5	2	2.5	3	3.5	4	5	6	7
\ <u></u>	d	р	14.3	8	5.5	5	6	8	10.9	14.6	q	35.9	r

(a) Find the values of p, q and r.

[3]

- (b) Using a scale of 2 cm to represent 1 minute on the horizontal t-axis and 2 cm to represent 10 metres on the vertical d-axis, draw the graph of $d = (t+1)^2 + \frac{48}{(t+1)} 20$ for $0 \le t \le 7$. [6]
- (c) Mark and label F the point on your graph when the fish is 12 metres from Dimitra and swimming away from her. Write down the value of t at this point, correct to one decimal place. [2]
- (d) For how many minutes is the fish less than 10 metres from Dimitra?

[2]

(e) By drawing a suitable line on your grid, calculate the speed of the fish when t = 2.5.

[4]

Oct 02 Paper 4

- 5 Answer the whole of this question on a sheet of graph paper.
 - (a) The table gives values of $f(x) = \frac{24}{x^2} + x^2$ for $0.8 \le x \le 6$.

ļ	$-\frac{1}{x}$	0.8	1	1.5	2	2.5	3	3.5	4	4.5	5	5.5	6
	f(x)	38.1	25	12.9	10	10.1	11.7	l	m	n	26	31	36.7

Calculate, correct to 1 decimal place, the values of l, m and n.

[3]

(b) Using a scale of 2 cm to represent 1 unit on the x-axis and 2 cm to represent 5 units on the y-axis, draw an x-axis for $0 \le x \le 6$ and a y-axis for $0 \le y \le 40$.

Draw the graph of
$$y = f(x)$$
 for $0.8 \le x \le 6$.

[6]

- (c) Draw the tangent to your graph at x = 1.5 and use it to calculate an estimate of the gradient of the curve at this point. [4]
- (d) (i) Draw a straight line joining the points (0, 20) and (6, 32).

[1]

(ii) Write down the equation of this line in the form y = mx + c.

[2]

(iii) Use your graph to write down the x-values of the points of intersection of this line and the curve y = f(x). [2]

(iv) Draw the tangent to the curve which has the same gradient as your line in part d(i).

(v) Write down the equation for the tangent in part d(iv).

[1] [2]

IGCSE - Graphs/tangents/gradients -2

Oct 03 Paper 4

4 Answer the whole of this question on a sheet of graph paper.

	t	0	1	2	3	4	5	6	7
ļ	f(t)	0	25	37.5	43.8	46.9	48.4	49.2	49.6

- (a) Using a scale of 2 cm to represent 1 unit on the horizontal t-axis and 2 cm to represent 10 units on the y-axis, draw axes for $0 \le t \le 7$ and $0 \le y \le 60$.
 - Draw the graph of the curve y = f(t) using the table of values above.

[5]

- **(b)** $f(t) = 50(1 2^{-t}).$
 - (i) Calculate the value of f(8) and the value of f(9).

[2]

(ii) Estimate the value of f(t) when t is large.

[1]

- (c) (i) Draw the tangent to y = f(t) at t = 2 and use it to calculate an estimate of the gradient of the curve at this point. [3]
 - (ii) The function f(t) represents the speed of a particle at time t. Write down what quantity the gradient gives.

[1]

(d) (i) On the same grid, draw y = g(t) where g(t) = 6t + 10, for $0 \le t \le 7$.

[2]

(ii) Write down the range of values for t where f(t) > g(t).

[2]

(iii) The function g(t) represents the speed of a second particle at time t. State whether the first or second particle travels the greater distance for $0 \le t \le 7$. You must give a reason for your answer.

[2]

May 04 Paper 4

2 Answer all of this question on a sheet of graph paper.

(a)
$$f(x) = x^2 - x - 3$$
.

	x	-3	-2	1	0	1	2	3	4
ı	f(x)	p	3	-1	-3	q	-1	3	r

(i) Find the values of p, q and r.

[3]

(ii) Draw the graph of y = f(x) for $-3 \le x \le 4$. Use a scale of 1 cm to represent 1 unit on each axis.

[4]

[3]

(iii) By drawing a suitable line, estimate the gradient of the graph at the point where x = -1.

(b)
$$g(x) = 6 - \frac{x^3}{3}$$
.

x		-2	-1	0	1	2	3
g(x)	8.67	и	ν	5.67	3.33	-3

(i) Find the values of u and v.

[2]

(ii) On the same grid as part (a) (ii) draw the graph of y = g(x) for $-2 \le x \le 3$.

[4]

(c) (i) Show that the equation f(x) = g(x) simplifies to $x^3 + 3x^2 - 3x - 27 = 0$.

[1]

(ii) Use your graph to write down a solution of the equation $x^3 + 3x^2 - 3x - 27 = 0$.

[1]