IGCSE – graphs/tangents/gradients – 4

Oct 05 Paper 4

5 Answer the whole of this question on one sheet of graph paper.

$$f(x) = 1 - \frac{1}{x^2}, x \neq 0.$$

														ı
(a)							2.0	a 0.2	0.4	0.5	1	1 2	3	1
• •		_3	_2 '	_1	-0.5	l -0.4	-0.3	∰ U.3	0.4	0.5				4
	X	-3						2		_3	0	0.75	71	ł
	6()	г.	0.75	N 1	-3	l-5.25	q	$\mathfrak{g} = q$	-5.25	3	<u> </u>	0.75	<u> </u>	נ
	$\{1(X)\}$	Ρ	0.35				L	-						

Find the values of p and q.

[2]

[1]

- (b) (i) Draw an x-axis for $-3 \le x \le 3$ using 2 cm to represent 1 unit and a y-axis for $-11 \le y \le 2$ using 1 cm to represent 1 unit.
 - (ii) Draw the graph of y = f(x) for $-3 \le x \le -0.3$ and for $0.3 \le x \le 3$. [5]
- (c) Write down an integer k such that f(x) = k has no solutions. [1]
- (d) On the same grid, draw the graph of y = 2x 5 for $-3 \le x \le 3$. [2]
- (e) (i) Use your graphs to find solutions of the equation $1 \frac{1}{x^2} = 2x 5$. [3]
 - (ii) Rearrange $1 \frac{1}{x^2} = 2x 5$ into the form $ax^3 + bx^2 + c = 0$, where a, b and c are integers. [2]
- (f) (i) Draw a tangent to the graph of y = f(x) which is parallel to the line y = 2x 5.
 - (ii) Write down the equation of this tangent. [2]

Oct 06 Paper 4

4 Answer the whole of this question on a sheet of graph paper.

$$f(x) = 3x - \frac{1}{x^2} + 3, \ x \neq 0.$$

(a) The table shows some values of f(x).

x	-3	-2.5	-2	-1.5	-1	-0.5	-0.4	-0.3	0.3	0.4	0.5	1	1.5	2	2.5	3
f(x)	p	-4.7	-3.3	-1.9	-1	2.5	-4.5	-9.0	-7.2	-2.1	0.5	q	7.1	8.8	10.3	r

Find the values of p, q and r.

[3]

- (b) Draw axes using a scale of 1 cm to represent 0.5 units for $-3 \le x \le 3$ and 1 cm to represent 2 units for $-10 \le y \le 12$. [1]
- (c) On your grid, draw the graph of y = f(x) for $-3 \le x \le -0.3$ and $0.3 \le x \le 3$. [5]
- (d) Use your graph to solve the equations

(i)
$$3x - \frac{1}{x^2} + 3 = 0$$
, [1]

(ii)
$$3x - \frac{1}{x^2} + 7 = 0$$
. [3]

- (e) g(x) = 3x + 3. On the same grid, draw the graph of y = g(x) for $-3 \le x \le 3$. [2]
- (f) (i) Describe briefly what happens to the graphs of y = f(x) and y = g(x) for large positive or negative values of x.
 - (ii) Estimate the gradient of y = f(x) when x = 100.