1)

(i) (a) Third angle of triangle $=180-(75+40)$

$$
=65^{\circ}
$$

Notes: Award (A2) for 65 seen.
For use of 40° or 75° in an otherwise correct sine rule award (M1)(A0)(A0)

$$
\begin{aligned}
& \text { Length of fence: } \left.\begin{array}{rl}
\frac{x}{\sin 65^{\circ}} & =\frac{410}{\sin 75^{\circ}} \text { (sine rule) } \\
x & =385 \mathrm{~m}(3 \text { s.f. }) \\
\text { (M1)(A1) }
\end{array}\right] \text { or (G1) } \\
& \text { [5 marks] }
\end{aligned}
$$

(b) \quad Area $=\frac{1}{2} a b \sin c$

$$
\text { area }=\frac{1}{2} \times 385 \times 245 \sin 24^{\circ}
$$

(M1)(A1)

$$
\begin{equation*}
=19200\left(\mathrm{~m}^{2}\right)(3 \text { s.f. }) \tag{A1}
\end{equation*}
$$

or (G2)

(ii) $\frac{\text { height }}{5.7}=\tan 42^{\circ}$,	[3 marks]	
therefore height $=5.7 \tan 42^{\circ}(=5.1323 \ldots \mathrm{~cm})$	(M1)	
Volume of prism	$=\frac{5.7 \tan \left(42^{\circ}\right) \times 5.7 \times 8}{2}$	or (G2)
	$=117 \mathrm{~cm}^{3}(3$ s.f. $)$	(M1)
(A1)		

Note: The only departures from the substituted volume formula allowed are those where the $5.7 \tan (42)$ is replaced with a value that the candidate seems to believe is the height. e.g. 5.7 repeated is a possibility. In such cases, award (M1)(A0).
2)
(a) (i) 15.4×5.5
(MI)
$84.7 \mathrm{~m}^{2}$
(A1)
(UP)

$$
=847000 \mathrm{~cm}^{2}
$$

(A1)(G3)
Note: Award (G2) if $84.7 \mathrm{~m}^{2}$ seen with no working.
OR
(ii) $242 \mathrm{~cm}^{2}\left(0.0242 \mathrm{~m}^{2}\right)$
(A1)(M1)

$$
1540 \times 550
$$

$$
A 1)(\mathrm{ft})(\mathrm{G} 3)
$$

Note: Award (A1) for both dimensions converted correctly to cm , (M1) for multiplication of both dimensions. (A1)(ft) for correct product of their sides in cm .
(iii) $\frac{15.4}{0.22}=70$
(A1)
$\frac{5.5}{0.11}=50$
$70 \times 50=3500 \quad$ (A1)(G2)

[6 marks]

OR

$$
\frac{847000}{242}=3500
$$

$($ M1) $($ A1 $)(\mathrm{ft})($ G2 $)$

Note: Follow through from parts (a) (i) and (ii).
(b) (i) $\mathrm{BC}^{2}=4^{2}+6^{2}-2 \times 4 \times 6 \times \cos 40^{\circ}$
(UP)
(UP)
$\mathrm{BC}=3.90 \mathrm{~m}$

$$
(A 1)(G 2)
$$

Note: Award (M1) for correct substituted formula, (A1) for correct substitutions, (A1) for correct answer.
(ii) perimeter $=13.9 \mathrm{~m}$
(A1)(ft)(G1)
Notes: Follow through from part (b) (i).
(iii) Area $=\frac{1}{2} \times 4 \times 6 \times \sin 40^{\circ}$
(M1)

$$
=7.71 \mathrm{~m}^{2}
$$

Notes: Award (M1) for correct formula and correct substitution, (A1)(ft) for correct answer.
(iv) $\frac{7.713}{84.7} \times 100 \%=9.11 \% \quad$ (A1)(M1)(A1)(ft)(G2)

Geometry and Trig Answers

3)

(a) $\frac{\sin \mathrm{BCA}}{35}=\frac{\sin 105^{\circ}}{80}$

Note: Award (M1) for correct substituted formula, (A1) for correct substitutions.
$\mathrm{BCA}=25.0^{\circ}$
(A1)(G2)
[3 marks]
(b) Length $\mathrm{BD}=40 \mathrm{~m}$
(A1)
Angle $\mathrm{ABC}=180^{\circ}-105^{\circ}-25^{\circ}=50^{\circ}$
(A1)(ft)
Note: (ft) from their answer to (a).

$$
\mathrm{AD}^{2}=35^{2}+40^{2}-\left(2 \times 35 \times 40 \times \cos 50^{\circ}\right)
$$

(M1)(A1)(ft)
Note: Award (M1) for correct substituted formula, (A1)(ft) for correct substitutions.
(UP) $\quad \mathrm{AD}=32.0 \mathrm{~m}$
Notes: If 80 is used for BD award at most $(\boldsymbol{A 0})(\boldsymbol{A 1})(\mathbf{f t})(\boldsymbol{M 1})(\boldsymbol{A 1})(\mathbf{f t})(\boldsymbol{A 1})(\mathbf{f t})$ for an answer of 63.4 m .
If the angle $A B C$ is incorrectly calculated in this part award at most $(A 1)(A 0)(M 1)(A 1)(f t)(A 1)(f t)$.
If angle BCA is used award at most (A1)(A0)(M1)(A0)(A0).
(c) length of fence $=35+40+32$
(UP)

$$
=107 \mathrm{~m}
$$

(M1)
(A1)(ft)(G2)
[2 marks]
Note: (M1) for adding $35+40+$ their (b).
(d) cost per metre $=\frac{802.50}{107}$

Note: Award (M1) for dividing 802.50 by their (c).

> cost per metre = 7.50 USD (7.5 USD) (USD not required)
(e) Area of $\mathrm{ABD}=\frac{1}{2} \times 35 \times 40 \times \sin 50$
(A1)(ft)(G2)
[2 marks]
(M1)

$$
=536.2311102
$$

(UP)

$$
=536 \mathrm{~m}^{2}
$$

(A1)(ft)
(A1)(ft)(G2)
Note: Award (M1) for correct substituted formula, (A1)(ft) for correct substitution, (ft) from their value of BD and their angle ABC in (b).
(f) Volume $=0.03 \times 536$
(A1)(M1)

$$
=16.08
$$

$$
=16.1
$$

(A1)(ft)(G2)
Note: Award (A1) for 0.03, (M1) for correct formula. (ft) from their (e).
If 3 is used award at most $(\boldsymbol{A 0})(\mathbf{M 1})(\mathbf{A 0})$.

Geometry and Trig Answers

4)

Unit penalty (UP) is applicable in (a), (b)(ii) and (d)
(a) $\mathrm{AC}^{2}=9^{2}+4.2^{2}-2 \times 9 \times 4.2 \times \cos 95^{\circ}$
$\mathrm{AC}=10.3 \mathrm{~m}$
(M1) for correct substituted formula and (A1) for correct substitution If radians used answer is 6.59. Award at most (M1)(A1)(A0)
(b) (i) $\quad \mathrm{B} \hat{\mathrm{CA}}=25^{\circ}$
(ii) $\frac{\mathrm{AB}}{\sin 25^{\circ}}=\frac{10.258 \ldots}{\sin 130^{\circ}}$
$\mathrm{AB}=5.66 \mathrm{~m}$
(M1) for correct substituted formula and (A1) for correct substitution. (A1) for correct answer.
Follow through with angle B $\hat{C} A$ and their $A C$.
Allow $A B=5.68$ if $A C=10.3$ used.
If radians used answer is 0.938 (unreasonable answer).
Award at most (M1)(A1)(A0)(ft)

OR

Using that ABC is isosceles
$\cos 25^{\circ}=\frac{\frac{1}{2} \times 10.258 \ldots}{\mathrm{AB}}$ (or equivalent)
$\mathrm{AB}=5.66 \mathrm{~m}$
(A1) for $\frac{1}{2}$ of their $A B$ seen, (M1) for correct trigonometric ratio and correct substitution, (A1) for correct answer.
If $\frac{1}{2} A B$ seen and correct answer is given award $(\boldsymbol{A 1})(\boldsymbol{G 1})$.
Allow $A B=5.68$ if $A C=10.3$ used.
If radians used answer is 3.32. Award (A1)(M1)(A1)(ft). If sin65 and radians used answer is 3.99. Award (A1)(M1)(A1)(ft)
(c) Area $=\frac{1}{2} \times 9 \times 4.2 \times \sin 95^{\circ}+\frac{1}{2} \times(5.6592 \ldots)^{2} \times \sin 130^{\circ}$

$$
=31.095 \ldots=31.1 \mathrm{~m}^{2}(\text { correct to } 3 \text { s.f. })
$$

(M1)(M1) each for correct substitution in the formula of the area of each triangle, (M1) for adding both areas. (A1) for unrounded answer.
Follow through with their length of $A B$ but last mark is lost if they do not reach the correct answer.
(d) Volume of sand $=\frac{1}{3}(31.09 \ldots \times 0.4)$

$$
=4.15 \mathrm{~m}^{3}
$$

(M1) for correct formula of volume of prism and for correct substitution, (M1) for multiplying by $\frac{1}{3}$ and last (A1) for correct answer only.
(M1)(A1)
(A1)(G2)
(A1)
(M1)(A1)
(A1)(ft)(G2)
(A1)(M1)(ft)
(A1)(ft)(G2)
[4 marks]
(M1)(M1)(ft)(M1)
(A1)(AG)

