IB Questionbank Maths SL

Geometric Series Answers

0 min
0 marks

1. (a) $r=\frac{16}{32}\left(=\frac{1}{2}\right)$
A1 N1
(b) correct calculation or listing terms
(A1)
e.g. $32 \times\left(\frac{1}{2}\right)^{6-1}, 8 \times\left(\frac{1}{2}\right)^{3}, 32, \ldots 4,2,1$

$$
u_{6}=1
$$

(c) evidence of correct substitution in S_{∞}

$$
\text { e.g. } \frac{32}{1-\frac{1}{2}}, \frac{32}{\frac{1}{2}}
$$

$$
S_{\infty}=64
$$

$$
\mathrm{A} 1 \quad \mathrm{~N} 1
$$

2. (a) $u_{10}=3(0.9)^{9}$

A1 N1
(b) recognizing $r=0.9$
(A1)
e.g. $S=\frac{3}{1-0.9}$
$S=\frac{3}{0.1}$
$S=30$
[5]
3. $S=\frac{u_{1}}{1-r}=\frac{\frac{2}{3}}{1-\left(-\frac{2}{3}\right)}$
$=\frac{2}{3} \times \frac{3}{5}$
$=\frac{2}{5}$
(A1) (C4)
4. (a) evidence of substituting into formula for nth term of GP
e.g. $u_{4}=\frac{1}{81} r^{3}$
setting up correct equation $\frac{1}{81} r^{3}=\frac{1}{3}$
$r=3$
(b) METHOD 1
setting up an inequality (accept an equation)
M1
e.g. $\frac{\frac{1}{81}\left(3^{n}-1\right)}{2}>40 ; \frac{\frac{1}{81}\left(1-3^{n}\right)}{-2}>40 ; 3^{n}>6481$
evidence of solving
M1
e.g. graph, taking logs

$$
n>7.9888 \ldots
$$

(A1)

$$
n=8
$$

A1 N2

METHOD 2

if $n=7$, sum $=13.49 \ldots$; if $n=8$, sum $=40.49 \ldots$
A2
$n=8$ (is the smallest value)
A2 N 2
5. (a) evidence of dividing two terms
e.g. $-\frac{1800}{3000},-\frac{1800}{1080}$
$r=-0.6$
A1 N2
(b) evidence of substituting into the formula for the $10^{\text {th }}$ term
e.g. $u_{10}=3000(-0.6)^{9}$
$u_{10}=-30.2$ (accept the exact value -30.233088)
A1 N 2
(c) evidence of substituting into the formula for the infinite sum
e.g. $S=\frac{3000}{1.6}$
$S=1875$
A1 N 2
[6]
6. (a) $5000(1.063)^{n}$
(b) Value $=\$ 5000(1.063)^{5}(=\$ 6786.3511 \ldots)$ $=\$ 6790$ to 3 s.f. (accept $\$ 6786$, or $\$ 6786.35$)
(c) (i) $5000(1.063)^{n}>10000$ or $(1.063)^{n}>2$

A1 N1

A1 N1

A1 N1
(ii) Attempting to solve the inequality $n \log (1.063)>\log 2$
(M1)
(A1)
A1 N3

Note: Candidates are likely to use TABLE or LIST on a GDC to find n.
A good way of communicating this is suggested below.
Let $y=1.063^{x}$
When $x=11, y=1.9582$, when $x=12, y=2.0816$ $x=12$ i.e. 12 years
(M1)
(A1)
A1 N3
7. (a) $\frac{1}{5}(0.2)$

A1 N 1
(b) (i) $\quad u_{10}=25\left(\frac{1}{5}\right)^{9}$
$=0.0000128\left(\left(\frac{1}{5}\right)^{7}, 1.28 \times 10^{-5}, \frac{1}{78125}\right)$
(M1)
(ii) $u_{n}=25\left(\frac{1}{5}\right)^{n-1}$

A1 N 2
(c) For attempting to use infinite sum formula for a GP $\left(\frac{25}{1-\left(\frac{1}{5}\right)}\right)$
$S=\frac{125}{4}=31.25(=31.3$ to $3 s f)$
A1 N2
8. (a) For taking three ratios of consecutive terms

$$
\frac{54}{18}=\frac{162}{54}=\frac{486}{162} \quad(=3)
$$

hence geometric
(b) (i) $r=3$
(A1)
$u_{n}=18 \times 3^{n-1}$
(ii) For a valid attempt to solve $18 \times 3^{n-1}=1062882$ $e g$ trial and error, logs
$n=11$

