IB Questionbank Maths SL

Geometric Series

45 min
45 marks

1. The first three terms of an infinite geometric sequence are 32,16 and 8 .
(a) Write down the value of r.
(b) Find u_{6}.
(c) Find the sum to infinity of this sequence.
2. Consider the infinite geometric sequence $3,3(0.9), 3(0.9)^{2}, 3(0.9)^{3}, \ldots$.
(a) Write down the $10^{\text {th }}$ term of the sequence. Do not simplify your answer.
(b) Find the sum of the infinite sequence.
3. Find the sum of the infinite geometric series

$$
\frac{2}{3}-\frac{4}{9}+\frac{8}{27}-\frac{16}{81}+\ldots
$$

(Total 4 marks)
4. In a geometric series, $u_{1}=\frac{1}{81}$ and $u_{4}=\frac{1}{3}$.
(a) Find the value of r.
(b) Find the smallest value of n for which $S_{n}>40$.
5. Consider the infinite geometric sequence $3000,-1800,1080,-648, \ldots$.
(a) Find the common ratio.
(b) Find the $10^{\text {th }}$ term.
(c) Find the exact sum of the infinite sequence.
(2)
(Total 6 marks)
6. A sum of $\$ 5000$ is invested at a compound interest rate of 6.3% per annum.
(a) Write down an expression for the value of the investment after n full years.
(b) What will be the value of the investment at the end of five years?
(c) The value of the investment will exceed $\$ 10000$ after n full years.
(i) Write down an inequality to represent this information.
(ii) Calculate the minimum value of n.
7. Consider the infinite geometric sequence $25,5,1,0.2, \ldots$.
(a) Find the common ratio.
(b) Find
(i) the $10^{\text {th }}$ term;
(ii) an expression for the $n^{\text {th }}$ term.
(c) Find the sum of the infinite sequence.
(Total 6 marks)
8. The first four terms of a sequence are $18,54,162,486$.
(a) Use all four terms to show that this is a geometric sequence.
(b) (i) Find an expression for the $n^{\text {th }}$ term of this geometric sequence.
(ii) If the $n^{\text {th }}$ term of the sequence is 1062882 , find the value of n.

