IB Questionbank Maths SL

Geometric Series

45 min 45 marks

1.	• The first three terms of an infinite geometric sequence are 32, 16 and 8.				
	(a)	Write down the value of <i>r</i> .	(1)		
	(b)	Find <i>u</i> ₆ .	(2)		
	(c)	Find the sum to infinity of this sequence.	(2) (Total 5 marks)		
2.	Cons	sider the infinite geometric sequence 3, 3(0.9), $3(0.9)^2$, $3(0.9)^3$,			
	(a)	Write down the 10 th term of the sequence. Do not simplify your answer.	(1)		

(b) Find the sum of the infinite sequence.

(4) (Total 5 marks) **3.** Find the sum of the infinite geometric series

$$\frac{2}{3} - \frac{4}{9} + \frac{8}{27} - \frac{16}{81} + \dots$$

4. In a geometric series, $u_1 = \frac{1}{81}$ and $u_4 = \frac{1}{3}$.

(a) Find the value of <i>i</i>	r.
--------------------------------	----

(b) Find the smallest value of *n* for which $S_n > 40$.

(4) (Total 7 marks)

(3)

5.	Cons	Consider the infinite geometric sequence $3000, -1800, 1080, -648, \dots$.				
	(a)	Find the common ratio.	(2)			
	(b)	Find the 10 th term.	(2)			
	(c)	Find the exact sum of the infinite sequence.	(2) (Total 6 marks)			
6.	A su	m of \$ 5000 is invested at a compound interest rate of 6.3 % per annum.				
	(a)	Write down an expression for the value of the investment after n full years.	(1)			
	(b)	What will be the value of the investment at the end of five years?	(1)			
	(c)	The value of the investment will exceed \$ 10 000 after n full years.				
		(i) Write down an inequality to represent this information.				
		(ii) Calculate the minimum value of <i>n</i> .				
			(4) (Total 6 marks)			

- 7. Consider the infinite geometric sequence 25, 5, 1, 0.2,
 - (a) Find the common ratio.
 - (b) Find
 - (i) the 10^{th} term;
 - (ii) an expression for the n^{th} term.
 - (c) Find the sum of the infinite sequence.

(Total 6 marks)

(2)

- 8. The first four terms of a sequence are 18, 54, 162, 486.
 - (a) Use all four terms to show that this is a geometric sequence.
 - (b) (i) Find an expression for the n^{th} term of this geometric sequence.
 - (ii) If the n^{th} term of the sequence is 1062 882, find the value of n.

(4) (Total 6 marks)