#### **QUESTION 4** 1)

| Condition         | Line           |
|-------------------|----------------|
| m > 0 and $c > 0$ | L <sub>5</sub> |
| m < 0 and $c > 0$ | L <sub>4</sub> |
| m < 0 and $c < 0$ | 4              |
| m > 0 and $c < 0$ | L <sub>3</sub> |

(C6)(A6)

Notes: Award (A6) for all correct, (A5) for 3 correct, (A3) for 2 correct, (A1) for 1 correct. Deduct (A1) for any repetition.

N10/5/MATSD/SP1/ENG/TZ0/XX

#### **QUESTION 4** 2)

(a) -2

(A1) (C1)

Note: Accept (0, -2)

(A1) (C1)

2

(A1)(ft) (C1)

Note: Follow through from their answer to part (b).

y = 2x + c (can be implied)

 $7 = 2 \times 3 + c$ 

(M1)

c = 1y=2x+1

(A1)(ft)

Notes: Award (M1) for substitution of (3,7), (A1)(ft) for c. Follow through from their answer to part (c).

OR

y-7=2(x-3)

(M1)(M1)

Note: Award (M1) for substitution of their answer to part (c), (M1) for substitution of (3,7).

2x - y + 1 = 0 or -2x + y - 1 = 0

(C3)(A1)(ft)

Note: Award (A1)(ft) for their equation in the stated form.

M10/5/MATSD/SP1/ENG/TZ2/XX

# 3) QUESTION 10

(a) Gradient = 
$$\frac{(5-1)}{(4-2)}$$
 (M1)

Note: Award (M1) for correct substitution in the gradient formula.

$$=2$$
 (A1) (C2)

(b) Midpoint = 
$$(3,3)$$
 (accept  $x = 3, y = 3$ ) (A1)

(c) Gradient of perpendicular = 
$$-\frac{1}{2}$$
 (A1)(ft)

$$y = -\frac{1}{2}x + c \tag{M1}$$

$$3 = -\frac{1}{2} \times 3 + c$$
 $c = 4.5$ 
 $y = -0.5x + 4.5$ 
(A1)(ft)

OR

$$y-3=-0.5(x-3)$$
 (A1)(A1)(ft)

Note: Award (AI) for -0.5, (AI) for both threes.

OR

$$2y + x = 9$$
 (A1)(A1)(ft) (C3)

Note: Award (A1) for 2, (A1) for 9.

[6 marks]

N09/5/MATSD/SP1/ENG/TZ0/XX

## 4) QUESTION 7

(a) 
$$0+2y=12$$
 or  $x+2(0)=12$  (MI)  
 $P(0,6)$  (accept  $x=0, y=6$ ) (AI)  
 $Q(12,0)$  (accept  $x=12, y=0$ ) (AI) (C3)

**Notes:** Award (M1) for setting either value to zero. Missing coordinate brackets receive (A0) the first time this occurs. Award (A0)(A1)(ft) for P(0,12) and Q(6,0)

(b) 
$$x+2(x-3)=12$$
 (M1)  
(6,3) (accept  $x=6, y=3$ ) (A1)(A1) (C3)

Note: (A1) for each correct coordinate

Missing coordinate brackets receive (A0)(A1) if this is the first time it occurs.

[6 marks]

M09/5/MATSD/SP1/ENG/TZ2/XX

| 07  | (-) 4                                                    | (3.67)   |           |
|-----|----------------------------------------------------------|----------|-----------|
| Q7. | (a) $4y = -x - 34$ or similar rearrangement              | (M1)     |           |
|     | Gradient = $-\frac{1}{2}$                                | (A1)     | (C2)      |
|     | 4                                                        |          |           |
| (   | (b) 	 m=4                                                | (A1)(ft) |           |
|     | (A1) Change of sign                                      | (A1)(ft) | (C2)      |
|     | (A1) Use of reciprocal                                   |          |           |
| (   | (c) Reasonable attempt to solve equations simultaneously | (M1)     |           |
|     | (-2, -8)                                                 | (A1)(ft) | (C2)      |
|     | Accept $x = -2$ $y = -8$                                 |          |           |
|     | Award (A0) if brackets not included.                     |          |           |
|     | mara (no) y oracress not memaca.                         |          |           |
|     |                                                          |          | [6 marks] |

### N08/5/MATSD/SP1/ENG/TZ0/XX

| 6) |    |     | 17 11100/0/141111010/                                                                | OI 1/11/10/11/11/11 | M 171 · |  |
|----|----|-----|--------------------------------------------------------------------------------------|---------------------|---------|--|
| 0) | Q6 | (a) | 3                                                                                    | (A1)                | (C1)    |  |
|    |    | (b) | -1/3 (ft) from (a)                                                                   | (A1)(ft)            | (C1)    |  |
|    |    | (c) | Substituting (6, 7) in $y = \text{their } mx + c \text{ or equivalent to find } c$ . | (M1)                |         |  |
|    |    |     | $y = \frac{-1}{3}x + 9 \text{ or equivalent}$                                        | (A1)(ft)            | (C2)    |  |
|    |    | (d) | (1.5, 8.5) Award (A1) for 1.5, (A1) for 8.5. (ft) from (c), brackets not required.   | (A1)(A1)(ft)        | (C2)    |  |
|    |    |     |                                                                                      | [6]                 | marks]  |  |

# M08/5/MATSD/SP1/ENG/TZ2/XX+

| 7) | Q13 |     |                                                                     |                      |        |
|----|-----|-----|---------------------------------------------------------------------|----------------------|--------|
| ., | Q15 | (a) | s = 6                                                               | (A1)                 |        |
|    |     | (4) | t = -2                                                              | (AI)                 | (C2)   |
|    |     |     | . – 2                                                               | (111)                | (02)   |
|    |     |     | -2-8 -10 5                                                          |                      |        |
|    |     | (b) | gradient of AB = $\frac{-2-8}{-2-6} = \frac{-10}{-8} = \frac{5}{4}$ | (AI)(ft)             |        |
|    |     |     | (A1) for gradient of AM or BM = $\frac{5}{4}$                       |                      |        |
|    |     |     | 4                                                                   |                      |        |
|    |     |     | Perpendicular gradient = $-\frac{4}{5}$                             | (A1)(ft)             |        |
|    |     |     | 2                                                                   | (/(-/                |        |
|    |     |     | Equation of perpendicular bisector is                               |                      |        |
|    |     |     | $y = -\frac{4}{5}x + c$                                             |                      |        |
|    |     |     | $3 = -\frac{4}{5}(2) + c$                                           | (MI)                 |        |
|    |     |     | 2                                                                   | (1711)               |        |
|    |     |     | c = 4.6                                                             |                      |        |
|    |     |     | y = -0.8x + 4.6                                                     |                      |        |
|    |     |     | or 5y = -4x + 23                                                    | (A1)(ft)             | (C4)   |
|    |     |     | N07/5/M                                                             | ATSD/SP1/ENG/TZ0/XX+ | marks] |
|    |     |     |                                                                     | 10                   |        |

8)

**QUESTION 3** 



(a) line passes through (-2, 0) (A1) line is straight (A1) negative gradient (line must be straight for mark to be awarded) (A1) correct gradient (line must be straight for mark to be awarded) (A1) (C4) (b) y-0=-3(x+2) or 3x+y=3(-2)+1(0) or y=-3x+c etc (M1) 3x+y=-6 (or equivalent) (A1)(A1)(A1)

**Note:** Award *(C4)* ft for y = -3x + candidate's y - intercept (or equivalent). Otherwise award:

(A1) for y with = in a linear equation,

(A1) for y = -3x or y + 3x seen or for m = -3,

(A1) for candidate's y-intercept included in a linear expression. **Do not** ft candidate's gradient if it is wrong in the diagram, no mark for stand alone -3x

9)

M05/5/MATSD/SP1/ENG/TZ0/XX+

### **QUESTION 9**

(a)  $L_1$  has gradient 2 and  $L_2$  has gradient  $-\frac{1}{4}$ .

(A1)(A1) (C2)

Note: Award (A0)(A1) ft if the order of the gradients is reversed or both signs are wrong or both are reciprocals of the correct answer.

(b) L2 is drawn incorrectly.

 $(A2) \qquad (C2)$ 

(c) The product of the gradients is  $2 \times -\frac{1}{4} = -\frac{1}{2} \neq -1$ .

(M1)(A1) (C2)

Note: Award (M1) for looking at product of gradients, (A1) for comparing something to -1.

(d) The drawing should show a straight line passing through x and y intercepts at (4, 0) and (0, 1) respectively.

(A1)(A1) (C2)

Note: Award (A1) for each intercept. If these are wrong but gradient is  $-\frac{1}{4}$  then (A1). If correct line is very poorly drawn then (A1).

M04/530/S(1)