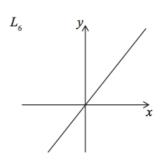

1) The following diagrams show six lines with equations of the form y = mx + c.



In the table below there are four possible conditions for the pair of values m and c. Match each of the given conditions with one of the lines drawn above.

Condition	Line
m > 0 and $c > 0$	
m < 0 and $c > 0$	
m < 0 and $c < 0$	
m > 0 and $c < 0$	

[6 marks]

- 2) The straight line, L_1 , has equation $y = -\frac{1}{2}x 2$.
 - (a) Write down the y intercept of L_1 .

[1 mark]

(b) Write down the gradient of L₁.

[1 mark]

The line L_2 is perpendicular to L_1 and passes through the point (3, 7).

(c) Write down the gradient of the line L_2 .

[1 mark]

(d) Find the equation of L_2 . Give your answer in the form ax + by + d = 0 where $a, b, d \in \mathbb{Z}$.

[3 marks]

Geometry and Trig Straight lines

- 3) A line joins the points A(2, 1) and B(4, 5).
 - (a) Find the gradient of the line AB.

[2 marks]

Let M be the midpoint of the line segment AB.

(b) Write down the coordinates of M.

[1 mark]

(c) Find the equation of the line perpendicular to AB and passing through M.

[3 marks]

The diagram below shows the line PQ, whose equation is x + 2y = 12. The line intercepts the axes at P and Q respectively.

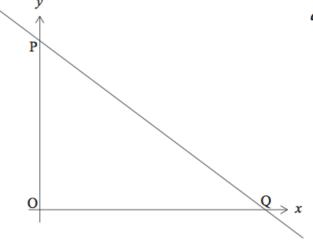


diagram not to scale

(a) Find the coordinates of P and of Q.

[3 marks]

(b) A second line with equation x - y = 3 intersects the line PQ at the point A. Find the coordinates of A.

[3 marks]

Geometry and Trig Straight lines

- 5) A straight line, L_1 , has equation x+4y+34=0.
 - (a) Find the gradient of L_1 .

[2 marks]

The equation of line L_2 is y = mx. L_2 is perpendicular to L_1 .

(b) Find the value of m.

[2 marks]

(c) Find the coordinates of the point of intersection of the lines L_1 and L_2 .

[2 marks]

6) (a) Write down the gradient of the line y = 3x + 4.

[1 mark]

(b) Find the gradient of the line which is perpendicular to the line y = 3x + 4.

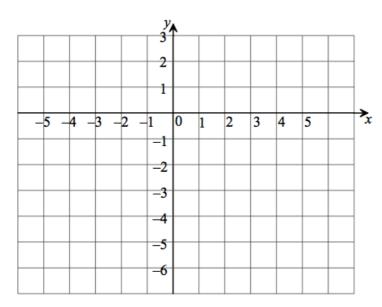
[1 mark]

(c) Find the equation of the line which is perpendicular to y=3x+4 and which passes through the point (6,7).

[2 marks]

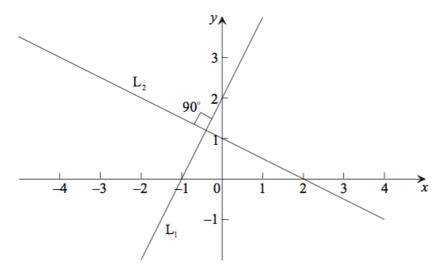
(d) Find the coordinates of the point of intersection of these two lines.

[2 marks]


- 7) The mid-point, M, of the line joining A(s, 8) to B(-2, t) has coordinates M(2, 3).
 - (a) Calculate the values of s and t.

[2 marks]

(b) Find the equation of the straight line perpendicular to AB, passing through the point M.


[4 marks]

8)

- (a) On the grid above, draw a straight line with a gradient of -3 that passes through the point (-2,0).
- (b) Find the equation of this line.

A student has drawn the two straight line graphs L_1 and L_2 and marked in the angle between them as a right angle, as shown below. The student has drawn one of the lines incorrectly.

Consider L₁ with equation y = 2x + 2 and L₂ with equation $y = -\frac{1}{4}x + 1$.

- (a) Write down the gradients of L_1 and L_2 using the given equations.
- (b) Which of the two lines has the student drawn incorrectly?
- (c) How can you tell from the answer to part (a) that the angle between L_1 and L_2 should not be 90° ?
- (d) Draw the correct version of the incorrectly drawn line on the diagram.