IBSL Functions Past Paper Questions SOLUTIONS

1. (a) METHOD 1

$$
\begin{align*}
& f(3)=\sqrt{7} \tag{A1}\\
& (g \circ f)(3)=7
\end{align*}
$$

METHOD 2

$(g \circ f)(x)=\sqrt{x+4}^{2} \quad(=x+4)$
$(g \circ f)(3)=7$
A1 N2
(b) For interchanging x and y (seen anywhere) (M1)
Evidence of correct manipulation A1
$e g \quad x=\sqrt{y+4}, x^{2}=y+4$
$f^{-1}(x)=x^{2}-4$
A1 N2
(c) $x \geq 0$

A1 N1
[6]
2. (a) $f^{-1}(2) \Rightarrow 3 x+5=2$
$x=-1$
(b) $g(f(-4)=g(-12+5)$

$$
\begin{align*}
& =g(-7) \tag{A1}\\
& =2(1+7) \\
& =16 \tag{A1}
\end{align*}
$$

[4]
3. (a) METHOD 1

$$
\begin{gather*}
(f \circ g)(4)=f(g(4))=f(1) \tag{M1}\\
=2 \tag{A1}
\end{gather*}
$$

METHOD 2

$(f \circ g)(x)=\frac{2}{x-3}$
$(f \circ g)(4)=2$
(b) Let $y=\frac{1}{x-3}$

$$
\begin{equation*}
\text { Correct simplification } y(x-3)=1 \quad\left(x-3=\frac{1}{y}\right) \tag{A1}
\end{equation*}
$$

$$
x=\frac{1}{y}+3 \quad\left(=\frac{1+3 y}{y}\right)
$$

Interchanging x and y (may happen earlier)

$$
\begin{equation*}
y=\frac{1}{x}+3 \quad\left(=\frac{1+3 x}{x}\right) \tag{M1}
\end{equation*}
$$

$$
\text { (c) } \quad x \neq 0 \text { (} \boxtimes \backslash\{0\} \text { etc) }
$$

(A1) (C1)
4. Discriminant $\Delta=b^{2}-4 a c\left(=(-2 k)^{2}-4\right)$

Note: Award (M1)(M0) for $\Delta \geq 0$.
$(2 k)^{2}-4>0 \Rightarrow 4 k^{2}-4>0$

EITHER

$4 k^{2}>4\left(k^{2}>1\right)$
OR
$4(k-1)(k+1)>0$
OR
$(2 k-2)(2 k+2)>0$

THEN

$k<-1$ or $k>1$
(A1)(A1) (C6)
Note: Award (A1) for $-1<k<1$.
5. (a) METHOD 1

Using the discriminant $=0\left(q^{2}-4(4)(25)=0\right)$
$q^{2}=400$
$q=20, q=-20$
A1A1 N2

METHOD 2

Using factorizing:
$(2 x-5)(2 x-5)$ and/or $(2 x+5)(2 x+5) \quad$ M1
$q=20, q=-20$
A1A1 N2
(b) $x=2.5$
(c) $(0,25)$

A1A1 N2
6. One solution \Rightarrow discriminant $=0$

$$
\begin{align*}
3^{2}-4 k & =0 \tag{M2}\\
9 & =4 k \tag{A2}\\
k & =\frac{9}{4}\left(=2 \frac{1}{4}, 2.25\right) \tag{A2}
\end{align*}
$$

Note: If candidates correctly solve an incorrect equation, award M2 A0 A2(ft), if they have the first line or equivalent, otherwise award no marks.
7. (a) (i) $m=3$
(ii) $p=2$

A2 N 2
$\begin{array}{ll}\text { (b) Appropriate substitution } & \text { M1 } \\ \text { eg } 0=d(1-3)^{2}+2,0=d(5-3)^{2}+2,2=d(3-1)(3-5) & \\ d=-\frac{1}{2} & \text { A1 N1 }\end{array}$
8. (a) (i) $h=-1$
(A2) (C2)
(ii) $k=2$
(A1) (C1)
(b) $\mathrm{a}(1+1)^{2}+2=0$
(M1)(A1)

$$
\begin{equation*}
a=-0.5 \tag{A1}
\end{equation*}
$$

9. (a) $a=3, b=4$
$f(x)=(x-3)^{2}+4$

> A1 (C2)
(b) $y=(x-3)^{2}+4$

METHOD 1

$$
\begin{gather*}
x=(y-3)^{2}+4 \tag{M1}\\
x-4=(y-3)^{2} \tag{M1}\\
\sqrt{x-4}=y-3 \\
y=\sqrt{x-4}+3
\end{gather*}
$$

(A1) 3
METHOD 2
$y-4=(x-3)^{2}$
$\sqrt{y-4}=x-3$
$\sqrt{y-4}+3=x$
$y=\sqrt{x-4}+3$
$\Rightarrow f^{-1}(x)=\sqrt{x-4}+3$
(A1) 3
(c) $x \geq 4$
(A1)(C1)
10. (a) $p=-\frac{1}{2}, q=2$
or vice versa
(b) By symmetry C is midway between p, q

Note: This (M1) may be gained by implication.
$\Rightarrow x$-coordinate is $\frac{-1 / 2+2}{2}=\frac{3}{4}$
11. (a) evidence of attempting to solve $f(x)=0$
evidence of correct working
$e g(x+1)(x-2), \frac{1 \pm \sqrt{9}}{2}$
intercepts are $(-1,0)$ and $(2,0)($ accept $x=-1, x=2)$
(b) evidence of appropriate method
eg $x_{v}=\frac{x_{1}+x_{2}}{2}, x_{v}=-\frac{b}{2 a}$, reference to symmetry
$x_{v}=0.5$
A1 N2
12. (a)

(b) Minimum: $\left(1, \frac{3}{2}\right)$

Maximum: (2, 2)
(A2) (C2)
(A1) (C1)
(A1) (C1)
13. (a) $g(x)=2 f(x-1)$

x	0	1	2	3
$x-1$	-1	0	1	2
$f(x-1)$	3	2	0	1

$g(0)=2 f(-1)=6$
(A1) (C1)
$g(1)=2 f(0)=4$
(A1) (C1)
$g(2)=2 f(1)=0$
(A1) (C1)
$g(3)=2 f(2)=2$
(A1) (C1)
(b) Graph passing through $(0,6),(1,4),(2,0),(3,2)$
(A1)
Correct shape.
(A1)

14. (a) D
(b) C

A2 N2
(c) A
15. (a) intercepts when $f(x)=0$
$(1.54,0)(4.13,0)($ accept $x=1.54 x=4.13)$
A1A1 N3
(b)

A1A1A1 N3
Note: Award Al for passing through approximately ($0,-4$), A1 for correct shape, A1 for a range of approximately -9 to 2.3 .
(c) gradient is 2

A1 N1
[7]
16. (a) For a reasonable attempt to complete the square, (or expanding)
$3 x^{2}-12 x+11=3\left(x^{2}-4 x+4\right)+11-12$
$=3(x-2)^{2}-1$ (Accept $\left.h=2, k=1\right)$
A1A1
2
(b) METHOD 1

Vertex shifted to $(2+3,-1+5)=(5,4)$
so the new function is $3(x-5)^{2}+4($ Accept $p=5, q=4)$

METHOD 2

$g(x)=3((x-3)-h)^{2}+k+5=3((x-3)-2)^{2}-1+5$ M1
$=3(x-5)^{2}+4($ Accept $p=5, q=4)$
A1A1
2
17. (a) For attempting to complete the square or expanding $y=2(x-c)^{2}+d$, or for showing the vertex is at $(3,5)$
$y=2(x-3)^{2}+5 \quad($ accept $c=3, d=5)$
A1A1 N2
(b) (i) $k=2$

A1 N1
(ii) $p=3$

A1 N1
(iii) $q=5$

A1 N1
[6]
18. (a)

Note: Award M1 for evidence of reflection in x-axis, Al for correct vertex and all intercepts approximately correct.
(b) \quad (i) $\quad g(-3)=f(0)$
(A1)
A1 N2
(ii) translation (accept shift, slide, etc.) of $\binom{-3}{0}$

