IBSL Functions Past Paper Questions SOLUTIONS

1. (a) **METHOD 1**

$$f(3) = \sqrt{7}$$
 (A1)
(g \circ f) (3) = 7 (A1)
METHOD 2

$$(g \circ f)(x) = \sqrt{x+4}^2$$
 (= x + 4) (A1)

$$(g \circ f)(3) = 7$$
 A1 N2

(b) For interchanging x and y (seen anywhere) Evidence of correct manipulation $eg \quad x = \sqrt{y+4}, x^2 = y+4$ $f^{-1}(x) = x^2 - 4$ A1 N2

(c)
$$x \ge 0$$
 A1 N1

2. (a)
$$f^{-1}(2) \Rightarrow 3x + 5 = 2$$
 (M1)
 $x = -1$ (A1) (C2)

(b)
$$g(f(-4) = g(-12 + 5))$$

= $g(-7)$ (A1)
= $2(1 + 7)$
= 16 (A1) (C2)

[4]

[6]

3.	(a)	METHOD 1	
		$(f \circ g)(4) = f(g(4)) = f(1)$	(M1)
		= 2	(A1) (C2)
		METHOD 2	
		$(f \circ g)(x) = \frac{2}{x-3}$	(M1)

$$(f \circ g) (4) = 2$$
 (A1) (C2)

(b) Let $y = \frac{1}{x-3}$

Correct simplification y(x-3) = 1 $\left(x-3=\frac{1}{y}\right)$ (A1)

$$x = \frac{1}{y} + 3 \qquad \left(=\frac{1+3y}{y}\right) \tag{A1}$$

Interchanging x and y (may happen earlier) (M1)

$$y = \frac{1}{x} + 3 \qquad \left(=\frac{1+3x}{x}\right) \tag{C3}$$

(c)
$$x \neq 0$$
 ($\times \setminus \{0\}$ etc) (A1) (C1)

[6]

4.	Discriminant $\Delta = b^2 - 4ac \ (= (-2k)^2 - 4)$ $\Delta > 0$ <i>Note:</i> Award (M1)(M0) for $\Delta \ge 0$.	(A1) (M2)
	$(2k)^2 - 4 > 0 \Longrightarrow 4k^2 - 4 > 0$	
	EITHER	
	$4k^2 > 4 \ (k^2 > 1)$	(A1)
	OR	
	4(k-1)(k+1) > 0	(A1)
	OR	
	(2k-2)(2k+2) > 0	(A1)

THEN

k < -1 or $k > 1$		(A1)(A1) (C6)
	<i>Note:</i> Award (A1) for $-1 < k < 1$.	

[6]

5. (a) **METHOD 1**

(b)

Using the discriminant = $0 (q^2 - 4(4)(25) = 0)$	M1		
$q^2 = 400$			
q = 20, q = -20	A1A1	N2	
METHOD 2			
Using factorizing: (2x - 5)(2x - 5) and/or $(2x + 5)(2x + 5)$	M1		
q = 20, q = -20	A1A1	N2	
x = 2.5	A1	N1	

[6]

6. One solution
$$\Rightarrow$$
 discriminant = 0 (M2)
 $3^2 - 4k = 0$ (A2)
 $9 = 4k$

$$k = \frac{9}{4} \left(= 2\frac{1}{4}, 2.25 \right)$$
(A2) (C6)

Note: If candidates correctly solve an incorrect equation, award M2 A0 A2(ft), if they have the first line or equivalent, otherwise award no marks.

[6]

7. (a) (i) m = 3 A2 N2 (ii) p = 2 A2 N2

(b) Appropriate substitution M1

$$eg \ 0 = d(1-3)^2 + 2, \ 0 = d(5-3)^2 + 2, \ 2 = d(3-1)(3-5)$$

 $d = -\frac{1}{2}$ A1 N1

[6]

8. (a) (i)
$$h = -1$$
 (A2) (C2)

 (ii) $k = 2$
 (A1) (C1)

(b)
$$a(1+1)^2 + 2 = 0$$
 (M1)(A1)

$$a = -0.5$$
 (A1) (C3)

[6]

9. (a)
$$a = 3, b = 4$$
 (A1)
 $f(x) = (x - 3)^2 + 4$ A1 (C2)

(b)
$$y = (x-3)^2 + 4$$

METHOD 1
 $x = (y-3)^2 + 4$ (M1)
 $x-4 = (y-3)^2$
 $\sqrt{x-4} = y-3$ (M1)
 $y = \sqrt{x-4} + 3$ (A1) 3
METHOD 2
 $y = 4 = (x-3)^2$ (M1)

$$y-4 = (x-3)^{2}$$
(M1)
 $\sqrt{y-4} = x-3$
(M1)
 $\sqrt{y-4} + 3 = x$
 $y = \sqrt{x-4} + 3$

$$\Rightarrow f^{-1}(x) = \sqrt{x-4} + 3 \tag{A1}$$

(c)
$$x \ge 4$$
 (A1)(C1)

[6]

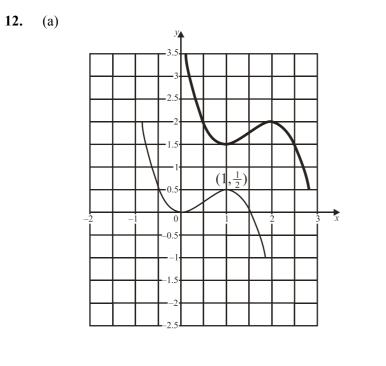
10. (a)
$$p = -\frac{1}{2}, q = 2$$
 (A1)(A1) (C2)
or vice versa
(b) By symmetry C is midway between p, q (M1)

Note: This (M1) may be gained by implication.

$$\Rightarrow x \text{-coordinate is } \frac{-\frac{1}{2}+2}{2} = \frac{3}{4}$$
(A1) (C2)

[4]

11.	(a)	evidence of attempting to solve $f(x) = 0$ evidence of correct working $eg(x+1)(x-2), \frac{1 \pm \sqrt{9}}{2}$	(M1) A1	
		intercepts are $(-1, 0)$ and $(2, 0)$ (accept $x = -1, x = 2$)	A1A1N1N1	
	(b)	evidence of appropriate method eg $x_v = \frac{x_1 + x_2}{2}, x_v = -\frac{b}{2a}$, reference to symmetry	(M1)	
		$x_v = 0.5$	A1 N2	3]



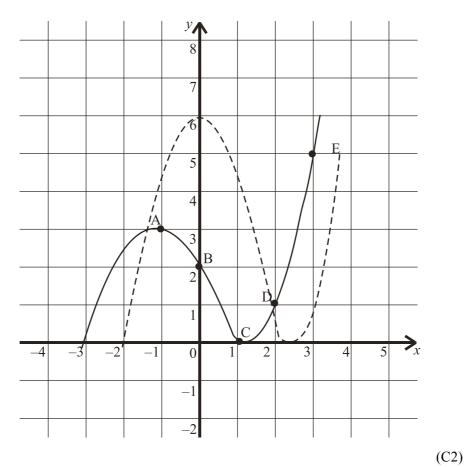
(b) Minimum: $(1, \frac{3}{2})$ (A1) (C1) Maximum: (2, 2) (A1) (C1)

[4]

(A2) (C2)

13.	(a) $g(x)$	=2f(x-l))			
	x	0	1	2	3	
	<i>x</i> – 1	-1	0	1	2	
	f(x-1)	3	2	0	1	
	g(0) = 2f(0) g(1) = 2f(0) g(2) = 2f(0) g(3) = 2f(0)	(0) = 4 (1) = 0				 (A1) (C1) (A1) (C1) (A1) (C1) (A1) (C1)

(b) Graph passing through (0, 6), (1, 4), (2, 0), (3, 2) (A1) Correct shape. (A1)



[6]

 14. (a) D
 A2 N2

 (b) C
 A2 N2

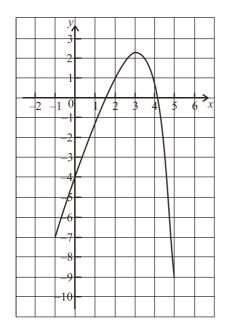
6

(c) A

[6]

15.	(a)	intercepts when $f(x) = 0$	(M1)		
		(1.54, 0) $(4.13, 0)$ (accept $x = 1.54$ $x = 4.13$)	A1A1	N3	

(b)



A1A1A1 N3

Note: Award A1 for passing through approximately (0, – 4), A1 for correct shape, A1 for a range of approximately –9 to 2.3.

(c) gradient is 2

A1 N1

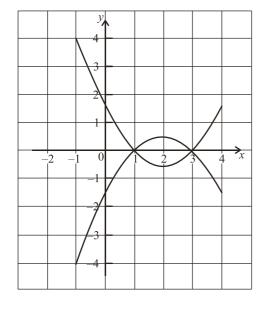
[7]

16. (a) For a reasonable attempt to complete the square, (or expanding) $3x^2 - 12x + 11 = 3(x^2 - 4x + 4) + 11 - 12$ $= 3(x-2)^2 - 1$ (Accept h = 2, k = 1) A1A1 2

(b) METHOD 1

Vertex shifted to $(2 + 3, -1 + 5) = (5, 4)$ so the new function is $3(x - 5)^2 + 4$ (Accept $p = 5, q = 4$)	M1 A1A1	2
METHOD 2		
$g(x) = 3((x-3) - h)^{2} + k + 5 = 3((x-3)-2)^{2} - 1 + 5$ = 3(x-5) ² + 4 (Accept p = 5, q = 4)	M1 A1A1	2

17.	(a)	For attempting to complete the square or expanding $y = 2(x - c)^2 + d$, or for showing the vertex is at (3, 5)			
		$y=2(x-3)^2+5$	(accept $c = 3, d = 5$)	A1A1	N2
	(b)	(i) $k = 2$		A1	N1
		(ii) $p = 3$		A1	N1
		(iii) $q = 5$		A1	N1



Note: Award M1 for evidence of reflection in x-axis, A1 for correct vertex and all intercepts approximately correct.

(b)	(i)	g(-3) = f(0) f(0) = -1.5	(A1) A1	N2
	(ii)	translation (accept shift, slide, <i>etc.</i>) of $\begin{pmatrix} -3\\ 0 \end{pmatrix}$	A1A1	N2

[6]

[6]

[6]

M1A1 N2