IBSL Functions Past Paper Questions | Letf | $f(x) = \sqrt{x+4}$, $x \ge -4$ and $g(x) = x^2$, $x \in \mathbb{R}$. | | |------|--|----------------| | (a) | Find $(g \circ f)$ (3). | | | (b) | Find $f^{-1}(x)$. | | | (c) | Write down the domain of f^{-1} . | | | | | •••• | | | | | | | | •••• | •••• | | | | | | | |
(Total 6 1 | | Two | functions f , g are defined as follows: | | | | $f: x \to 3x + 5$ $g: x \to 2(1 - x)$ | | | Find | | | | (a) | $f^{-1}(2);$ | | | (b) | $(g \circ f)(-4)$. | | | Wor | orking: | Answers: | | | | Answers: (a) | | (Total 4 marks) | 1 W Ork 100 · | | |--|---| | Working: | | | | | | | | | | | | | Answers: | | | (a) | | | (b)
(c) | | | \perp (c) | | | | | The equation $x^2 - 2kx + 1 = 0$ B Working: | (Total 6 n as two distinct real roots. Find the set of all possible values of k . | | | (Total 6 n | Consider the functions f(x) = 2x and $g(x) = \frac{1}{x-3}$, $x \ne 3$. 3. | For the greater value of q , solve $f(x) = 0$. Find the coordinates of the point of intersection of the two graphs. | | sider two different quadratic functions of the form $f(x) = 4x^2 - qx + 25$. The graph of each tion has its vertex on the x-axis. | |---|-----|--| | Find the coordinates of the point of intersection of the two graphs. (Total The equation $kx^2 + 3x + 1 = 0$ has exactly one solution. Find the value of k . Working: | (a) | Find both values of q . | | The equation $kx^2 + 3x + 1 = 0$ has exactly one solution. Find the value of k . Working: | (b) | For the greater value of q , solve $f(x) = 0$. | | The equation $kx^2 + 3x + 1 = 0$ has exactly one solution. Find the value of k . Working: | (c) | Find the coordinates of the point of intersection of the two graphs. | | The equation $kx^2 + 3x + 1 = 0$ has exactly one solution. Find the value of k . Working: | | | | The equation $kx^2 + 3x + 1 = 0$ has exactly one solution. Find the value of k . Working: | | | | The equation $kx^2 + 3x + 1 = 0$ has exactly one solution. Find the value of k . Working: | | | | The equation $kx^2 + 3x + 1 = 0$ has exactly one solution. Find the value of k . Working: | | | | The equation $kx^2 + 3x + 1 = 0$ has exactly one solution. Find the value of k . Working: | | | | The equation $kx^2 + 3x + 1 = 0$ has exactly one solution. Find the value of k . Working: | | | | The equation $kx^2 + 3x + 1 = 0$ has exactly one solution. Find the value of k . Working: | | | | The equation $kx^2 + 3x + 1 = 0$ has exactly one solution. Find the value of k . Working: | | | | The equation $kx^2 + 3x + 1 = 0$ has exactly one solution. Find the value of k . Working: | | | | The equation $kx^2 + 3x + 1 = 0$ has exactly one solution. Find the value of k . Working: | | | | The equation $kx^2 + 3x + 1 = 0$ has exactly one solution. Find the value of k . Working: | | | | Working: | | (Total | | Working: | | | | Working: | | | | | Γhe | equation $kx^2 + 3x + 1 = 0$ has exactly one solution. Find the value of k. | | Answer: | | | | | | rking: | | | | rking: | 7. Part of the graph of the function $y = d(x - m)^2 + p$ is given in the diagram below. The x-intercepts are (1, 0) and (5, 0). The vertex is V(m, 2). - (a) Write down the value of - (i) m; - (ii) p. - (b) Find *d*. (Total 6 marks) 8. The diagram shows part of the graph of $y = a(x - h)^2 + k$. The graph has its vertex at P, and passes through the point A with coordinates (1, 0). - (a) Write down the value of - (i) *h*; - (ii) k. - (b) Calculate the value of *a*. | Working: | | |----------|----------| | | | | | | | | | | | | | | Answers: | | | (a) (i) | | | (ii) | | | (b) | (Total 6 marks) - 9. The function f is given by $f(x) = x^2 6x + 13$, for $x \ge 3$. - (a) Write f(x) in the form $(x-a)^2 + b$. - (b) Find the inverse function f^{-1} . - (c) State the domain of f^{-1} . | Answers: | | |------------|--| | | | | (a)
(b) | | | (c) | | (Total 6 marks) **10.** The diagram represents the graph of the function $$f: x \mapsto (x-p)(x-q)$$. - (a) Write down the values of p and q. - (b) The function has a minimum value at the point C. Find the x-coordinate of C. (Total 4 marks) - 11. The following diagram shows part of the graph of f, where $f(x) = x^2 x 2$. - (a) Find both *x*-intercepts. **(4)** (b) Find the *x*-coordinate of the vertex. ` 12. The following diagram shows the graph of y = f(x). It has minimum and maximum points at (0, 0) and $(1, \frac{1}{2})$. - (a) On the same diagram, draw the graph of $y = f(x-1) + \frac{3}{2}$. - (b) What are the coordinates of the minimum and maximum points of $y = f(x-1) + \frac{3}{2}$? | Working: | | |----------|---------| | | | | | | | | | | | | | | Answer: | | | (b) | 13. The sketch shows part of the graph of y = f(x) which passes through the points A(-1, 3), B(0, 2), C(1, 0), D(2, 1) and E(3, 5). A second function is defined by g(x) = 2f(x-1). - (a) Calculate g(0), g(1), g(2) and g(3). - (b) On the same axes, sketch the graph of the function g(x). | Working: | | |----------|--------------| | | | | | | | | | | | | | | Answers: | | | (a) | | | | | | (Total 6 mar | 14. The following diagram shows part of the graph of f(x). Consider the five graphs in the diagrams labelled A, B, C, D, E below. - (a) Which diagram is the graph of f(x + 2)? - (b) Which diagram is the graph of -f(x)? - (c) Which diagram is the graph of f(-x) **15*.** Let $f(x) = 3x - e^{x-2} - 4$, for $-1 \le x \le 5$. (a) Find the x-intercepts of the graph of f. (b) On the grid below, sketch the graph of f. (3) **(3)** (Total 6 marks) | The (a) | quadratic function f is defined by $f(x) = 3x^2 - 12x + 11$.
Write f in the form $f(x) = 3(x - h)^2 - k$. | | |------------|--|-----| | (a)
(b) | The graph of f is translated 3 units in the positive x -direction and 5 units in the positive y -direction. Find the function g for the translated graph, giving your answer in the form $g(x) = 3(x-p)^2 + q$. | (Total 6 | 6 m | | (a)
The | Express $y = 2x^2 - 12x + 23$ in the form $y = 2(x - c)^2 + d$.
graph of $y = x^2$ is transformed into the graph of $y = 2x^2 - 12x + 23$ by the transformations a vertical stretch with scale factor k followed by a horizontal translation of p units followed by | | | | Express $y = 2x^2 - 12x + 23$ in the form $y = 2(x - c)^2 + d$.
graph of $y = x^2$ is transformed into the graph of $y = 2x^2 - 12x + 23$ by the transformations a vertical stretch with scale factor k followed by a horizontal translation of p units followed by a vertical translation of q units. | | | | Express $y = 2x^2 - 12x + 23$ in the form $y = 2(x - c)^2 + d$.
graph of $y = x^2$ is transformed into the graph of $y = 2x^2 - 12x + 23$ by the transformations a vertical stretch with scale factor k followed by a horizontal translation of p units followed by a vertical translation of q units. Write down the value of | | | The | Express $y = 2x^2 - 12x + 23$ in the form $y = 2(x - c)^2 + d$.
graph of $y = x^2$ is transformed into the graph of $y = 2x^2 - 12x + 23$ by the transformations a vertical stretch with scale factor k followed by a horizontal translation of p units followed by a vertical translation of q units. | | | The | Express $y = 2x^2 - 12x + 23$ in the form $y = 2(x - c)^2 + d$.
graph of $y = x^2$ is transformed into the graph of $y = 2x^2 - 12x + 23$ by the transformations a vertical stretch with scale factor k followed by a horizontal translation of p units followed by a vertical translation of q units. Write down the value of (i) k ; | | | The | Express $y = 2x^2 - 12x + 23$ in the form $y = 2(x - c)^2 + d$.
graph of $y = x^2$ is transformed into the graph of $y = 2x^2 - 12x + 23$ by the transformations a vertical stretch with scale factor k followed by a horizontal translation of p units followed by a vertical translation of q units. Write down the value of (i) k ; (ii) p ; | | | The | Express $y = 2x^2 - 12x + 23$ in the form $y = 2(x - c)^2 + d$.
graph of $y = x^2$ is transformed into the graph of $y = 2x^2 - 12x + 23$ by the transformations a vertical stretch with scale factor k followed by a horizontal translation of p units followed by a vertical translation of q units. Write down the value of (i) k ; (ii) p ; | | | (b) | Express $y = 2x^2 - 12x + 23$ in the form $y = 2(x - c)^2 + d$.
graph of $y = x^2$ is transformed into the graph of $y = 2x^2 - 12x + 23$ by the transformations a vertical stretch with scale factor k followed by a horizontal translation of p units followed by a vertical translation of q units. Write down the value of (i) k ; (ii) p ; | | | (b) | Express $y = 2x^2 - 12x + 23$ in the form $y = 2(x - c)^2 + d$. graph of $y = x^2$ is transformed into the graph of $y = 2x^2 - 12x + 23$ by the transformations a vertical stretch with scale factor k followed by a horizontal translation of p units followed by a vertical translation of q units. Write down the value of (i) k ; (ii) p ; (iii) q . | | | (b) | Express $y = 2x^2 - 12x + 23$ in the form $y = 2(x - c)^2 + d$. graph of $y = x^2$ is transformed into the graph of $y = 2x^2 - 12x + 23$ by the transformations a vertical stretch with scale factor k followed by a horizontal translation of p units followed by a vertical translation of q units. Write down the value of (i) k ; (ii) p ; (iii) q . | | | (b) | Express $y = 2x^2 - 12x + 23$ in the form $y = 2(x - c)^2 + d$. graph of $y = x^2$ is transformed into the graph of $y = 2x^2 - 12x + 23$ by the transformations a vertical stretch with scale factor k followed by a horizontal translation of p units followed by a vertical translation of q units. Write down the value of (i) k ; (ii) p ; (iii) q . | | | (b) | Express $y = 2x^2 - 12x + 23$ in the form $y = 2(x - c)^2 + d$. graph of $y = x^2$ is transformed into the graph of $y = 2x^2 - 12x + 23$ by the transformations a vertical stretch with scale factor k followed by a horizontal translation of p units followed by a vertical translation of q units. Write down the value of (i) k ; (ii) p ; (iii) q . | | | (b) | Express $y = 2x^2 - 12x + 23$ in the form $y = 2(x - c)^2 + d$. graph of $y = x^2$ is transformed into the graph of $y = 2x^2 - 12x + 23$ by the transformations a vertical stretch with scale factor k followed by a horizontal translation of p units followed by a vertical translation of q units. Write down the value of (i) k ; (ii) p ; (iii) q . | | | (b) | Express $y = 2x^2 - 12x + 23$ in the form $y = 2(x - c)^2 + d$. graph of $y = x^2$ is transformed into the graph of $y = 2x^2 - 12x + 23$ by the transformations a vertical stretch with scale factor k followed by a horizontal translation of p units followed by a vertical translation of q units. Write down the value of (i) k ; (ii) p ; (iii) q . | | | (b) | Express $y = 2x^2 - 12x + 23$ in the form $y = 2(x - c)^2 + d$. graph of $y = x^2$ is transformed into the graph of $y = 2x^2 - 12x + 23$ by the transformations a vertical stretch with scale factor k followed by a horizontal translation of p units followed by a vertical translation of q units. Write down the value of (i) k ; (ii) p ; (iii) q . | | | (b) | Express $y = 2x^2 - 12x + 23$ in the form $y = 2(x - c)^2 + d$. graph of $y = x^2$ is transformed into the graph of $y = 2x^2 - 12x + 23$ by the transformations a vertical stretch with scale factor k followed by a horizontal translation of p units followed by a vertical translation of q units. Write down the value of (i) k ; (ii) p ; (iii) q . | | | (b) | Express $y = 2x^2 - 12x + 23$ in the form $y = 2(x - c)^2 + d$. graph of $y = x^2$ is transformed into the graph of $y = 2x^2 - 12x + 23$ by the transformations a vertical stretch with scale factor k followed by a horizontal translation of p units followed by a vertical translation of q units. Write down the value of (i) k ; (ii) p ; (iii) q . | | **18.** Part of the graph of a function f is shown in the diagram below. (a) On the same diagram sketch the graph of y = -f(x). **(2)** - (b) Let g(x) = f(x+3). - (i) Find g(-3). - (ii) Describe **fully** the transformation that maps the graph of f to the graph of g. (4) (Total 6 marks)