- 1) (a) The function f is such that $f(x) = 2x^2 8x + 5$.
 - (i) Show that $f(x) = 2(x + a)^2 + b$, where a and b are to be found. [2]
 - (ii) Hence, or otherwise, write down a suitable domain for f so that f⁻¹ exists. [1]
 - (b) The functions g and h are defined respectively by

$$g(x) = x^2 + 4$$
, $x \ge 0$, $h(x) = 4x - 25$, $x \ge 0$.

- (i) Write down the range of g and of h^{-1} .
- (ii) On the axes below, sketch the graphs of y = g(x) and $y = g^{-1}(x)$, showing the coordinates of any points where the curves meet the coordinate axes. [3]

[2]

[4]

- (iii) Find the value of x for which gh(x) = 85.
- 2) A function g is defined by $g: x \rightarrow (x+3)^2 7$ for x > -3.
 - (i) Find an expression for $g^{-1}(x)$. [2]
 - (ii) Solve the equation $g^{-1}(x) = g(0)$. [3]

3) The function f is defined by

$$f(x) = (2x + 1)^2 - 3$$
 for $x \ge -\frac{1}{2}$.

Find

(ii) an expression for
$$f^{-1}(x)$$
. [3]

The function g is defined by

$$g(x) = \frac{3}{1+x}$$
 for $x > -1$.

- (iii) Find the value of x for which fg(x) = 13.
- 4) (i) Sketch the graph of y = |3x + 9| for -5 < x < 2, showing the coordinates of the points where the graph meets the axes. [3]
 - (ii) On the same diagram, sketch the graph of y = x + 6. [1]

[4]

- (iii) Solve the equation |3x + 9| = x + 6. [3]
- 5) Sketch the graph of $y = |x^2 8x + 12|$. [4]
- 6) (i) Sketch, on the same diagram, the graphs of y = x 3 and y = |2x 9|. [3]
 - (ii) Solve the equation |2x-9|=x-3. [2]