EXPECTED AND BINOMIAL 1 ANSWERS

1) QUESTION 5

(a) For using
$$\sum p = 1$$
 (0.4 + p + 0.2 + 0.07 + 0.02 = 1) (M1)
p = 0.31 (A1 N2)

(b) For using
$$E(X) = \sum x P(X = x)$$
 (M1)
 $E(X) = 1(0.4) + 2(0.31) + 3(0.2) + 4(0.07) + 5(0.02)$ A1
 $= 2$ A2 N2

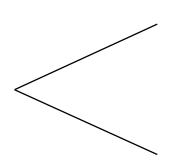
2) Part A

(a)	Adding probabilities g g' Evidence of knowing that sum =1 for probability distribution $e.g.$ Sum greater than 1, sum =1.3, sum does not equal 1	(M1) A R1 A	№2 [2 marks]
(b)	Equating sum to 1 $(3k + 0.7 = 1)$ k = 0.1	M1 A1	N1 [2 marks]
(c)	(i) $P(X=0) = \frac{0+1}{20}$	(M1)	
	$=\frac{1}{20}$	A1	N2

(ii) Evidence of using
$$P(X > 0) = 1 - P(X = 0)$$
 (or $\frac{4}{20} + \frac{5}{20} + \frac{10}{20}$) (M1)
= $\frac{19}{20}$ A1 N2

[4 marks]

Sub-total [8 marks]



(i) $P(B) = \frac{3}{4}$ (a) *A1* N1

(ii)
$$P(R) = \frac{1}{4}$$
 A1 N1
[2 marks]

(b)
$$p = \frac{3}{4}$$
 A1 N1

$$s = \frac{1}{4}, t = \frac{5}{4}$$
 A1 N1
[2 marks]

(c) (i)
$$P(X=3)$$

= P(getting 1 and 2) = $\frac{1}{4} \times \frac{3}{4}$ AI
= $\frac{3}{16}$ AG NO

(ii)
$$P(X=2) = \frac{1}{4} \times \frac{1}{4} + \frac{3}{4} \left(\text{or } 1 - \frac{3}{16} \right)$$
 (A1)
= $\frac{13}{16}$ A1 N2

(d) (i)
$$\begin{array}{c|cccc} X & 2 & 3 \\ \hline P(X=x) & \frac{13}{16} & \frac{3}{16} \end{array}$$
 A2 N2

(ii) evidence of using
$$E(X) = \sum x P(X = x)$$
 (M1)

=

$$E(X) = 2\left(\frac{13}{16}\right) + 3\left(\frac{3}{16}\right)$$
(A1)

$$\frac{35}{16} = 2\frac{3}{16}$$
 A1 N2

[5 marks]

(e) win \$10
$$\Rightarrow$$
 scores 3 one time, 2 other time
 $P(3) \times P(2) = \frac{13}{16} \times \frac{3}{16}$ (seen anywhere) (M1) continued ...
A1

evidence of recognising there are different ways of winning \$10 (M1) e.g. P(3)×P(2)+P(2)×P(3), $2\left(\frac{13}{16}\times\frac{3}{16}\right)$, $\frac{36}{256}+\frac{3}{256}+\frac{36}{256}+\frac{3}{256}$ P(win \$10) = $\frac{78}{256}$ $\left(=\frac{39}{128}\right)$ *A1* N3

[4 marks]

Total [16 marks]

3)

4)	(a)	evidence of binomial distribution (may be seen in parts (b) or (c)) e.g. np , 100×0.04	(M1)	
		mean = 4	A1	N2
	(b)	$P(X=6) = {\binom{100}{6}} (0.04)^6 (0.96)^{94}$	(A1)	
		= 0.105	<i>A1</i>	N2
	(c)	for evidence of appropriate approach <i>e.g.</i> complement, $1 - P(X = 0)$	(M1)	
		P(X = 0) = (0.96) ¹⁰⁰ = 0.01687 P(X ≥ 1) = 0.983	(A1) A1	N2 [7 marks]
5)	(a)	evidence of using $\sum p_i = 1$ correct substitution <i>e.g.</i> $10k^2 + 3k + 0.6 = 1$, $10k^2 + 3k - 0.4 = 0$	(M1) A1	
		k = 0.1	A2	N2
	(b)	evidence of using $E(X) = \sum p_i x_i$ correct substitution	(M1) (A1)	
		e.g. $-1 \times 0.2 + 2 \times 0.4 + 3 \times 0.3$ E(X) = 1.5	Al	N2 [7 marks]
6)	(a)	correct substitution into formula for $E(X)$ <i>e.g.</i> 0.05×240	(A1)	
		E(X) = 12	A1	N2 [2 marks]
	(b)	evidence of recognizing binomial probability (may be seen in part (a)) e.g. $\binom{240}{15} (0.05)^{15} (0.95)^{225}$, $X \sim B(240, 0.05)$	(M1)	
		P(X=15) = 0.0733	A1	N2 [2 marks]
	(c)	$P(X \le 9) = 0.236$ evidence of valid approach <i>e.g.</i> using complement, summing probabilities	(A1) (M1)	
		$P(X \ge 10) = 0.764$	A1	N3 [3 marks]
			Tota	ul [7 marks]

 $f(x) = g(x) \quad \cos x^2 = \mathrm{e}^x$

_

x = -1.11 x = 0

7)	correct substitution into $E(X) = \sum px$ (seen anywhere) e.g. $1s + 2 \times 0.3 + 3q = 1.7$, $s + 3q = 1.1$	A1	
	recognizing $\sum p = 1$ (seen anywhere) correct substitution into $\sum p = 1$ <i>e.g.</i> $s + 0.3 + q = 1$	(M1) A1	
	attempt to solve simultaneous equations correct working <i>e.g.</i> $0.3 + 2q = 0.7, 2s = 1$	(M1) (A1)	
	q = 0.2	AI	N4 [6 marks]

8)

Note: There may be slight differences in answers, depending on whether candidates use tables or GDCs, or their 3 sf answers in subsequent parts. Do not penalise answers that are consistent with **their** working and check carefully for *FT*.

(a) evidence of recognizing binomial (seen anywhere in the question) (M1) e.g. ${}_{n}C_{r} p^{r} q^{n-r}$, B(n, p), ${}^{10}C_{1} (0.012)^{1} (0.988)^{9}$

	p = 0.108	A1	N2
			[2 marks]
(b)	valid approach <i>e.g.</i> $P(X \le 1)$, 0.88627+ 0.10764	(M1)	

p = 0.994	A1	N2
		[2 marks]