EXPECTED AND BINOMIAL 1 ANSWERS

1)

QUESTION 5

(a) For using $\sum p=1 \quad(0.4+p+0.2+0.07+0.02=1$

$$
p=0.31
$$

(b) For using $\mathrm{E}(X)=\sum x \mathrm{P}(X=x)$

$$
\mathrm{E}(X)=1(0.4)+2(0.31)+3(0.2)+4(0.07)+5(0.02) \quad \text { A1 }
$$

$$
=2
$$

2) Part \mathbf{A}
(a) Adding probabilities (M1)
Evidence of knowing that sum $=1$ for probability distribution R1 e.g. Sum greater than 1 , sum $=1.3$, sum does not equal 1
(b) Equating sum to $1(3 k+0.7=1) \quad$ MI
$k=0.1$
A1
(c) (i) $\mathrm{P}(X=0)=\frac{0+1}{20}$
(M1)

$$
=\frac{1}{20}
$$

$$
A 1
$$

(ii) Evidence of using $\mathrm{P}(X>0)=1-\mathrm{P}(X=0) \quad\left(\right.$ or $\left.\frac{4}{20}+\frac{5}{20}+\frac{10}{20}\right)$ (M1)

$$
=\frac{19}{20}
$$

A1
3)
(a) (i) $\quad \mathrm{P}(B)=\frac{3}{4}$
(ii) $\quad \mathrm{P}(R)=\frac{1}{4}$
(b) $\quad p=\frac{3}{4}$

$$
s=\frac{1}{4}, t=\frac{3}{4}
$$

$$
A 1
$$

(c) (i) $\quad \mathrm{P}(X=3)$

$$
\begin{aligned}
& =P(\text { getting } 1 \text { and } 2)=\frac{1}{4} \times \frac{3}{4} \\
& =\frac{3}{16}
\end{aligned}
$$

(ii) $\mathrm{P}(X=2)=\frac{1}{4} \times \frac{1}{4}+\frac{3}{4}\left(\right.$ or $\left.1-\frac{3}{16}\right)$

$$
=\frac{13}{16}
$$

(d) (i)

X	2	3
$\mathrm{P}(X=x)$	$\frac{13}{16}$	$\frac{3}{16}$

(ii) evidence of using $\mathrm{E}(X)=\sum x \mathrm{P}(X=x)$

$$
\begin{align*}
\mathrm{E}(X) & =2\left(\frac{13}{16}\right)+3\left(\frac{3}{16}\right) \tag{A1}\\
& =\frac{35}{16} \quad\left(=2 \frac{3}{16}\right)
\end{align*}
$$

(e) win $\$ 10 \Rightarrow$ scores 3 one time, 2 other time

$$
\mathrm{P}(3) \times \mathrm{P}(2)=\frac{13}{16} \times \frac{3}{16}(\text { seen anywhere })
$$

evidence of recognising there are different ways of winning \$10
e.g. $\mathrm{P}(3) \times \mathrm{P}(2)+\mathrm{P}(2) \times \mathrm{P}(3), 2\left(\frac{13}{16} \times \frac{3}{16}\right), \frac{36}{256}+\frac{3}{256}+\frac{36}{256}+\frac{3}{256}$
$P(\operatorname{win} \$ 10)=\frac{78}{256} \quad\left(=\frac{39}{128}\right)$
4) (a) evidence of binomial distribution (may be seen in parts (b) or (c))
e.g. $n p, 100 \times 0.04$
mean $=4$
(b) $\quad \mathrm{P}(X=6)=\binom{100}{6}(0.04)^{6}(0.96)^{94}$ (A1)

$$
=0.105
$$

(c) for evidence of appropriate approach
e.g. complement, $1-\mathrm{P}(X=0)$
$\mathrm{P}(X=0)=(0.96)^{100}=0.01687 \ldots$ (A1)
$\mathrm{P}(X \geq 1)=0.983$
5) (a) evidence of using $\sum p_{i}=1$
correct substitution
e.g. $10 k^{2}+3 k+0.6=1,10 k^{2}+3 k-0.4=0$

$$
k=0.1
$$

$$
A 2
$$

(b) evidence of using $\mathrm{E}(X)=\sum p_{i} x_{i}$ (M1)
correct substitution
e.g. $-1 \times 0.2+2 \times 0.4+3 \times 0.3$
$\mathrm{E}(X)=1.5$
A1
6)
(a) correct substitution into formula for $\mathrm{E}(X)$
e.g. 0.05×240
$\mathrm{E}(X)=12$
(b) evidence of recognizing binomial probability (may be seen in part (a))
e.g. $\binom{240}{15}(0.05)^{15}(0.95)^{225}, \quad X \sim \mathrm{~B}(240,0.05)$
$\mathrm{P}(X=15)=0.0733$
A1
(c) $\mathrm{P}(X \leq 9)=0.236$
evidence of valid approach (M1)
e.g. using complement, summing probabilities
$\mathrm{P}(X \geq 10)=0.764$
7) correct substitution into $\mathrm{E}(X)=\sum p x$ (seen anywhere)
e.g. $1 s+2 \times 0.3+3 q=1.7, s+3 q=1.1$
recognizing $\sum p=1$ (seen anywhere)
(M1)
correct substitution into $\sum p=1$
e.g. $s+0.3+q=1$
attempt to solve simultaneous equations
(M1)
correct working
e.g. $0.3+2 q=0.7,2 s=1$
$q=0.2 \quad$ A1
8)

Note: There may be slight differences in answers, depending on whether candidates use tables or GDCs, or their 3 sf answers in subsequent parts. Do not penalise answers that are consistent with their working and check carefully for $\boldsymbol{F T}$.
(a) evidence of recognizing binomial (seen anywhere in the question)
(M1)
e.g. ${ }_{n} C_{r} p^{r} q^{n-r}, \mathrm{~B}(n, p),{ }^{10} C_{1}(0.012)^{1}(0.988)^{9}$
$p=0.108$
A1
[2 marks]
(b) valid approach
(M1)
e.g. $\mathrm{P}(X \leq 1), 0.88627 \ldots+0.10764 \ldots$
$p=0.994$
A1
N2

