Maths Exploration

Newton-Raphson method

A Introduction includes aim and rationale

Rationale- For this project I chose to research and analyse the Newton-Raphson method, where calculus is used to approximate roots. I chose this topic because it looked extremely interesting and the idea of using calculus to approximate roots, seemed intriguing.

The aim of this exploration is to find out how to use the Newton-Raphson method, and in what situations this method is used

Explanation of the Newton-Raphson method

The Newton-Raphson or Newton's method is an iterative process to approximate roots. We know simple roots for rational numbers such as $\sqrt{4}$ or $\sqrt{9}$, but what about irrational numbers such as $\sqrt{3}$ or $\sqrt{5}$. This method was discovered in 1736 by Isaac Newton after being published in the 'Method of Fluxions', this method was also described by Joseph Raphson in 1690 in 'Analysis Aequationum'.

The Newton-Raphson Process:

In the Newton-Raphson process the following formula is used:

This results in the following formula:

$$x_{2} = x_{1} - \frac{y_{1}}{gradient at x_{1}}$$

A Lack of explanation of where this comes from

Therefore

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$

E Method is applied after this,
but no evidence of understanding
why the method works

Now that we have a better estimate, the same method can be used again to get closer to the answer. This time x₃ will be found from x₂ represented by the formula below:

$$x_3 = x_2 - \frac{f(x_2)}{f'(x_2)}$$

 x_3 will be even closer to the root than x_2 was, and this procedure can be repeated an infinite number of times.

This is an explanation to the Newton-Raphson formula:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
A Not an explanation

Where n= the number of iterations

The more iterations that are carried out the more accurate the answer is. In practice the iteration is usually only repeated to x_{10} or less.

For example, if we use this method to approximate the value of root $\sqrt{7}$, if the equation $y = x^2 - 7$ is used.

The formula for this function is:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

$$x_{n+1} = x_n - \frac{x_n^2 - 7}{2x_n}$$
E Differentiation within syllabus

of applying unfamiliar

A Lack of detailed

explanation

Using the Newton-Raphson formula for this function the following table showing the value of x for different numbers of iterations:

X ₁	3.000000000
X ₂	2.6666666667
X ₃	2.6458333333
X4	2.6457513123
X5	2.6457513111
X ₆	2.6457513111
X7	2.6457513111
X8	2.6457513111
Х ₉	2.6457513111
X ₁₀	2.6457513111

The table shows that this method will only need a few iterations and you already have the value of x to 3 decimal places and after the fifth iteration you have the values of x up to 10 decimal places.

Graph showing Newton-Raphson method for $y = x^2 - 7$, when approximating $\sqrt{7}$

I will now do the same for $\sqrt{3}$, and I'll use the equation $y = x^2 - 3$

The formula for this function is:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
$$x_{n+1} = x_n - \frac{x_n^2 - 3}{2x_n}$$

Using the Newton-Raphson formula for this function the following table showing the value of x for different numbers of iterations:

2.000000000
1.7500000000
1.7321428571
1.7320508100
1.7320508076
1.7320508076
1.7320508076
1.7320508076
1.7320508076
1.7320508076

The table again shows that this method will only need a few iterations and you already have the value of x to 3 decimal places and after the fifth iteration you have the values of x up to 10 decimal places.

5110	ain $1 \le x \le 7$, and a table	of iterations	was produce	ed:	-	B Good
	1	2	3	4	5	6	7
X1	1.0000000000	1.5000000000	2.0000000000	2.0000000000	2.5000000000	2.5000000000	3.000000000
K2	1.0000000000	1.41666666667	1.7500000000	2.0000000000	2.2500000000	2.4500000000	2.6666666667
(3	1.0000000000	1.4142156863	1.7321428571	2.000000000	2.2361111111	2.4494897959	2.6458333333
4	1.0000000000	1.4142135624	1.7320508100	2.000000000	2.2360679779	2.4494897428	2.6457513123
5	1.0000000000	1.4142135624	1.7320508076	2.000000000	2.2360679775	2.4494897428	2.6457513111
6	1.0000000000	1.4142135624	1.7320508076	2.000000000	2.2360679775	2.4494897428	2.6457513111
7	1.0000000000	1.4142135624	1.7320508076	2.000000000	2.2360679775	2.4494897428	2.6457513111
8	1.0000000000	1.4142135624	1.7320508076	2.000000000	2.2360679775	2.4494897428	2.6457513111
9	1.0000000000	1.4142135624	1.7320508076	2.000000000	2.2360679775	2.4494897428	2.6457513111
10	1.000000000	1.4142135624	1.7320508076	2.000000000	2.2360679775	2.4494897428	2.6457513111
tho no	ough the ma	ain function o Juations. 🔫	of this metho	d is to appro	eximate roots	it can also be C, E Stu	x e used dent could have ment
tho r no r e hei	ough the ma on-linear eq xample the re f(x) = x –	ain function of $uations$. Newton-Raptan x or $f(x)$	of this metho ohson metho = x – cos x	d is to appro	to find whe	it can also be C,E Stu other roc en tan(x) = x of	e used dent could have ment ots, such as cube roots or cos(x)= x
tho r no or e hei	ough the ma on-linear eq xample the re f(x) = x – Newton Rap	ain function o puations. Newton-Rap tan x or f(x) =	of this metho ohson metho = x – cos x la can easily l	d is to appro d can be used be adjusted f	to find whe	it can also be C, E Stu- other roc en tan(x) = x of ations:	e used dent could have ment ots, such as cube roots or cos(x)= x
ltho r no r e 'hen ne N +1 =	bugh the matrix con-linear equation of the set of the	ain function o puations. Newton-Rap tan x or f(x) =	of this metho ohson metho = x – cos x la can easily l	d is to appro d can be used be adjusted f	d to find whe	it can also be C, E Stu- other roo en tan(x) = x of ations:	e used dent could have ment ots, such as cube roots or cos(x)= x C Student create own example, but o

Becomes:

$$x_{n+1} = x_n - \frac{x_n - tan(x_n)}{1 - sec^2(x_n)}$$

And when $f(x) = x - \cos x$

Becomes:

$$x_{n+1} = x_n - \frac{x_n - \cos(x_n)}{1 + \sin(x_n)}$$

Reflection:

Evaluation and conclusion

This was a very interesting exploration, as at the start I had no idea what the formula mean and the logic behind it. The idea of using the x-intercept of the gradient to get closer and closer to the correct value of x was amazing. Up to now, I always had a calculator to find B Confused the root or zero of a number. If I didn't I would just leave it as the $\sqrt{3}$ or $\sqrt{5}$. Although, use of "root" and "zero" this method may not be practical to use on a maths test, it has quite a few advantages. This method gives us the chance to approximate roots up to thousands of decimal places. Even after the first five iterations the value of x is given to 10 decimal places. When finding the root of x, it is quite easy to work out x₂ in your head, which is very close to the precise value. Furthermore, this formula is implemented in technology such as autograph, where Newton-Raphson Iteration is very easy to use and find, as well as by using spreadsheets where it is simple to implement the formula for any number of iterations. Nevertheless, it's easy to find the zero or root by finding the x-intercept, which is much easier than using the Newton-Raphson method on the calculator or any graphing program. This method would be useful though in any field involving zeros or roots where a high-level of precision is needed.

Bibliography:

Internet Sources:

"Newton-Raphson method." knowledgerush, n.d. Web. 20 Jun 2010. <http://www.knowledgerush.com/kr/encyclopedia/Newton-Raphson_method/>. D Opportunity for reflection on any special implications to non-linear functions

7

D Superficial

reflection with no depth "Newton-Raphson Method." N.p., n.d. Web. 20 Jun 2010. <http://www.shodor.org/unchem/math/newton/>.

"The Newton-Raphson Method ." *S.O.S. Math.* N.p., n.d. Web. 20 Jun 2010. <http://www.sosmath.com/calculus/diff/der07/der07.html>.

Image:

Web. 20 Jun 2010. < http://gilkalai.files.wordpress.com/2010/01/fa666.png>.