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Introduction 
My interest in Euler as a mathematician was first sparked when, on completing  a listener 
crossword, the hidden message “Read Euler,  he is the master of us all” was revealed, so 
when I saw the inclusion of his name on the list of prompt words there was really no 
option but to go for him. Euler was a mathematician in the 18th century and is responsible 
for the first proofs of many great many number of conjectures and problems. In number 
theory alone his accomplishments include proving the two square theorem and Fermat’s 
little theorem as well as doing a great deal of work that later led to the first proof of the 
four square theorem. His achievement that I am going to focus on though is less well 
known, it is a generalisation  of Fermat’s little theorem that has come to be known as 
Euler’s totient theorem. 

 
The Theorem 
Euler’s totient theorem1  states that for relatively prime a and n: 

 

aΦn ≡ 1 (mod n) 
 

Where Φn is Euler’s totient function 

 
Euler’s Totient Function 
Euler’s totient function2, or Φn, is a count of the numbers that are less than n and 
relatively prime to n. For example Φ10 is 4 as there are four number  less than ten that are 
relatively prime to 10 { 1, 3, 7, 9 }, Φ11 is 10 as 11 is prime all numbers  less than it are 
relatively prime to it and Φ6 is 2 as 1 and 5 are relatively prime to 6 but 2,3 and 4 are not. 

 

 

 
1  http://en.wikipedia.org/wiki/Euler's_theorem 
2  http://mathworld.wolfram.com/TotientFunction.html  

 A  Aim

 A  Introduction 
and rationale

 B  Class knew 
about modular 
arithmetic, 
so this didn't 
need definition.
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Below is a table of the totients of the numbers up to 20. 

N Φ N 
2 1 

3 2 

4 2 

5 4 

6 2 

7 6 

8 4 

9 6 

10 4 

11 10 

12 4 

13 12 

14 6 

15 8 

16 8 

17 16 

18 6 

19 18 

20 8 

 
Some examples will serve to demonstrate Euler’s totient theorem. 

Let n = 10 and a = 3. Note that 10 and 3 are relatively prime. From the table Φ10 = 4.  
Then, 34 = 81 ≡1(mod 10). 

Also, if n = 15 and a = 2 we see that 28 = 256 ≡ 1 (mod 15). 

Fermat’s Little Theorem 
Euler’s totient theorem is a generalisation of Fermat’s little theorem3 and works for all n 
relatively prime to a. Fermat’s little theorem only works for a and p relatively prime 
 

3  http://mathworld.wolfram.com/FermatsLittleTheorem.html  

 B  Small n in 
text. Condoned
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where p is itself prime and states: 

ap ≡ a (mod p) 

or 

ap-1 ≡ 1 (mod p) 

It is immediately apparent that this fits in with Euler’s totient theorem for primes p, as we 
have seen Φp, where p is a prime, is always p-1. 

As an introduction to Euler’s totient theorem I shall prove Fermat’s little theorem. 

Proving Fermat’s Little Theorem 
 
RTP:       ap ≡ a (mod p) 

Take two numbers a and p which are relatively prime, and where p itself is prime. 

Consider the set of the multiples of a { a, 2a, 3a, 4a, 5a ..... (p-1)a } 

Consider the set of numbers { 1, 2, 3, 4, 5 ..... (p-1) } 

If taken to the modulus p each element of the first set will be congruent to an element in 
the second, there will be one to one correspondence between the two sets and this is 
proven as lemma 1. 

If we take the product of the first set { a x 2a x 3a x 4a x 5a ...... (p-1)a } and the product 
of the second  { 1 x 2 x 3 x 4 x 5 ..... (p-1) } we can see that they are congruent to one 
another (as each element in the first is congruent to an element in the second) 

Therefore  { a x 2a x 3a x 4a x 5a ...... (p-1)a } ≡ { 1 x 2 x 3 x 4 x 5 ..... (p-1) } (mod  p) 

We can take out a factor of ap-1 from the left hand side 

Giving ap-1 { 1 x 2 x 3 x 4 x 5 ..... (p-1) } ≡ { 1 x 2 x 3 x 4 x 5 ..... (p-1) } (mod  p) 

By dividing each side by { 1 x 2 x 3 x 4 x 5 ..... (p-1) } which is valid as p is prime we get 

ap-1 ≡ 1 (mod p) 

or 

ap ≡ a (mod p) 

QED. 
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Lemma 1: Each number in the first set must be congruent to one and only one number in 
the second and each number in the second set must be congruent to one and only one 
number in the first. This may not be obvious at first but can be proved through three 
logical steps. 

(1) Each number in the first set must be congruent to one of the elements in the second as 
all possible congruences  save 0 are present, none will be congruent to 0 as a and p are 
relatively prime. 

(2) A number cannot be congruent to two numbers in the second set as a number can only 
be congruent to numbers which differ by a multiple of p, as all elements of the second 
set are smaller than p a number  can only be congruent to one of them. 

(3) No two numbers in the first set, call them ba and ca, can be congruent to the same 
number in the second. This would indicate that the two numbers were congruent to 
each other ba ≡ ca (mod p) which would indicate that b ≡ c (mod p) which is not true 
as they are both different and less than p itself. 

Therefore, through these three steps Lemma 1 is proven. 

Proving Euler’s Totient Theorem 
As Fermat’s little theorem is a special case of Euler’s totient theorem (where n is prime) 
the two proofs are quite similar and in fact only slight adjustments need to be made to the 
proof of Fermat’s little theorem to give you Euler’s totient theorem4. 
 
RTP:        aΦn ≡ 1 (mod n) 

Take two numbers, a and n which are relatively prime 

Consider the set N of numbers that are relatively prime to n { 1, n1, n2...nΦn } 

This set will have Φn elements (Φn is defined as the number of numbers relatively prime to n) 

Consider the set aN, where each element is the product of a and an element of N { a, an1, 
an2... anΦn } 

Each element in set aN will be congruent to an element in set N (mod n), this is follows by 
the same argument as in lemma 1 and so the two sets will be congruent to each other 

Therefore  { a x an1 x an2 x ... x anΦn } ≡ { 1 x n1 x n2 x ... x nΦn } (mod n) 

 

4  http://planetmath.org/?op=getobj&from=objects&id=335  
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By taking out a factor of aΦn from the left hand side we get  

aΦn { 1 x n1 x n2 x ... x nΦn } ≡ { 1 x n1 x n2 x ... x nΦn } (mod  n) 

If we then divide through by { 1 x n1 x n2 x ... x nΦn } which is valid as all elements are 
relatively prime to n we get 

aΦn ≡ 1 (mod n) 

QED. 

 

Applications 
Unlike some of Euler’s other work in number theory such as his proof of the two square 
theorem Euler’s totient theorem has very real uses and applications in the world and like 
much of number theory those uses are almost  exclusively  in the world of cryptography 
and cryptanalysis. Both Fermat’s little theorem and Euler’s totient theorem are used in the 
encryption and decryption of data, specifically in the RSA encryption system5, whose 
protection revolves around large prime numbers raised to large powers being difficult to 
factorise. 

 

Conclusion 
This theorem may not be Euler’s most elegant piece of mathematics (my personal 
favourite is his proof of the two square theorem by infinite descent) or at the time seemed 
like his most important piece of work at the time but this, in number theory at least, is 
probably his most useful piece of mathematics to the world today. 

This proof has given me a chance to link up some of the work I have done in the largely 
separate discrete mathematics and sets relations and groups options. These two options 
appear to me to be the purest sections of mathematics that I have studied but are for 
whatever reason seldom linked in class, this project has allowed me to explore the links 
between them and use knowledge from one in relation to the other, broadening my view 
of maths. 

 

 

 

 
5  http://www.muppetlabs.com/~breadbox/txt/rsa.html#7 

 A  Complete. 
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