Differentiation MS

0 min
0 marks

1. (a) $g^{\prime}(x)=4 x^{3}+9 x^{2}+4 x+1$

Note: Award (A3) for all five terms correctly differentiated, (A2) for four terms, (A1) for three terms, (A0) for two or less terms correctly differentiated.
(b) $g^{\prime}(1)=4(1)^{3}+9(1)^{2}+4(1)+1$
$=4+9+4+1$
$=18$
OR
18
(G2) 2
2. (a) $f^{\prime}(x)=6 x^{2}-10 x+3$
(A1)(A1)(A1)
Notes: Award (A1) for each correct term and no extra terms.
Award $(A 1)(A 1)(A 0)$ if each term correct and extra term seen.
$(A 1)(A 0)(A 0)$ if two terms correct and extra term seen.
Award (AO) otherwise.
(b) $f^{\prime}(2)=7$
(A1)(ft) (C1)
(c) $y=7 x-11$ or equivalent
(A1)(ft)(A1)(ft)
Notes: Award (A1)(ft) on their (b) for $7 x$ (must have x)
(Al)(ft) for -11 .
Accept $y-3=7(x-2)$.
3. (a) $f^{\prime}(x)=4 x+1$
(A1)(A1)(A1) (C3)
Note: Award (A1) for each term differentiated correctly.
Award at most $(A 1)(A 1)(A 0)$ if any extra terms seen.
(b) $\quad f(-3)=-11$
(A1)(ft) (C1)
(c) $4 x+1=0$
(A1)(ft) (C2)
4. (a) $-1.10,0.218,3.13$
(b) $f^{\prime}(x)=12 x^{2}-18 x-12$
(A1)(A1)(A1)
Note: Award (A1) for each correct term and award maximum of (A1)(A1) if other terms seen.
(c) $\quad f^{\prime}(x)=0$
$x=-0.5,2$
$x=-0.5$
(M1)
(A1)
Note: If $x=-0.5$ not stated, can be inferred from working below.

$$
\begin{align*}
& y=4(-0.5)^{3}-9(-0.5)^{2}-12(-0.5)+3 \tag{M1}\\
& y=6.25
\end{align*}
$$

Note: Award (M1) for their value of x substituted into $f(x)$. Award (M1)(G2) if sketch shown as method. If coordinate pair given then award $(M 1)(A 1)(M 1)(A 0)$. If coordinate pair given with no working award (G2).
(d) $(0,3)$

Note: Accept $x=0, y=3$.
(e) $f(0)=-12$
(M1)(A1)(ft)(G2)
Note: Award (M1) for substituting $x=0$ into their derivative.
(f) Tangent: $y=-12 x+3$
(A1)(ft)(A1)(G2)
Note: A ward (A1)(ft) for their gradient, (A1) for intercept $=3$.
Award (A1)(A0) if $y=$ not seen.
(g) $\quad-12$
(A1)(ft)
Note: Follow through from their part (e).
(h) $12 x^{2}-18 x-12=-12$
$12 x^{2}-18 x=0$
$x=1.5,0$
At $\mathrm{Q}, x=1.5$
(A1)(ft)(G2)
Note: Award (M1)(G2) for $12 x^{2}-18 x-12=-12$ followed by $x=1.5$.
Follow through from their part (g).
[19]
5.
(a) $f^{\prime}(x)=2+25 x^{-2}$
(A2) (C2)
(b) $2+25 x^{-2}=6$

$$
\begin{equation*}
25=4 x^{2} \tag{M1}
\end{equation*}
$$

$x^{2}=\frac{25}{4}$
$x= \pm 2.5$
(A1)(A1) (C4)
6. (a) $g^{\prime}(x)=3 x^{2}+12 x+12$
(A3) 3
(b) $3 x^{2}+12 x+12=0$
$x^{2}+4 x+4=0$
$(x+2)^{2}=0$
$x=-2$
(A1) or (G2) 2
(c) (i) $\quad x=-3 \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=3$
(ii) $x=0 \Rightarrow \frac{d y}{d x}=12$
(iii) (a) Increasing
(A1)
(b) Increasing
(A1) 4
7. (a) $y=13.5 x+4.5$ (M1)
Note: Award (M1) for 13.5x seen.

$$
\begin{equation*}
\text { gradient }=13.5 \tag{A1}
\end{equation*}
$$

(b) $4 x^{3}$
(A1) (C1)
(c) (i) $4 x^{3}=13.5$
(M1)
Note: Award (M1) for equating their answers to (a) and (b).

$$
\begin{equation*}
x=1.5 \tag{A1}
\end{equation*}
$$

(ii) $\frac{81}{16}(5.0625,5.06)$

Note: Award (A1)(ft) for substitution of their (c)(i) into x^{4} with working seen.
8. (a)

(b) line drawn with -ve gradient and +ve y-intercept
(G1) $(2.45,2.11)$
(c) $f(1.7)=3(1.7)^{2}-4(1.7)+1$
(M1)
2
Note: Award (M1) for substituting in their $f^{\prime}(x)$
2.87
(A1)(G2)
9. (a) $2 x+3(-1$ for each extra term)
(A2) (C2)
Note: If correct and an extra term included, award (A1) only.
(b) Equating the gradient to $5(2 x+3=5)$
(M1)
For solving attempt
For $x=1$
Co-ordinates (1, 2)
(A1) (C4)
[6]
10. (a) $\frac{3 x^{2}}{2}-4 x$
(A1)(A1)
Note: Award (A1) for each correct term and
no extra terms; award (A1)(A0) for both terms
correct and extra terms; (A0) otherwise.
(b) $3 x-4$

$$
\operatorname{accept} 3 x^{1}-4 x^{0}
$$

(c) $y=-2.5 x+4$ or equivalent

Notes: Award (A1)(ft) on their (a) for $-2.5 x$
(must have x), (A1) for 4 or equivalent correct answer only.
Accept $y-1.5=-2.5(x-1)$

