1) Given that $y=(x-5) \sqrt{2 x+5}$,
(i) show that $\frac{\mathrm{d} y}{\mathrm{~d} x}$ can be written in the form $\frac{k x}{\sqrt{2 x+5}}$ and state the value of k,
(ii) find the approximate change in y as x decreases from 10 to $10-p$, where p is small,
(iii) find the rate of change of x when $x=10$, if y is changing at the rate of 3 units per second at this instant.
2) A curve has the equation $y=\frac{2 x+4}{x-2}$.
(i) Find the value of k for which $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{k}{(x-2)^{2}}$.
(ii) Find the equation of the normal to the curve at the point where the curve crosses the x-axis. [4]

A point (x, y) moves along the curve in such a way that the x-coordinate of the point is increasing at a constant rate of 0.05 units per second.
(iii) Find the corresponding rate of change of the y-coordinate at the instant that $y=6$.
3) It is given that $y=(x+1)(2 x-3)^{3 / 2}$.
(i) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}$ can be written in the form $k x \sqrt{2 x-3}$ and state the value of k.

Hence
(ii) find, in terms of p, an approximate value of y when $x=6+p$, where p is small,
4) A curve has the equation $y=\frac{8}{2 x-1}$.
(i) Find an expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(ii) Given that y is increasing at a rate of 0.2 units per second when $x=-0.5$, find the corresponding rate of change of x.
5) Two variables, x and y, are related by the equation

$$
y=6 x^{2}+\frac{32}{x^{3}}
$$

(i) Obtain an expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(ii) Use your expression to find the approximate change in the value of y when x increases from 2 to 2.04 .

