1)	Ac	curve has the equation $y = xe^{2x}$.		
	(i)	Obtain expressions for $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$.	[5]	
	(ii)	Show that the y-coordinate of the stationary point of the curve is $-\frac{1}{2e}$.	[3]	
	(iii)	Determine the nature of this stationary point.	[2]	
2)	A curve has the equation $y = Ae^{2x} + Be^{-x}$ where $x \ge 0$. At the point where $x = 0$, $y = 50$ and $\frac{dy}{dx} = -\frac{1}{2}$			
	(i)	Show that $A = 10$ and find the value of B .	[5]	
	(ii)	Using the values of A and B found in part (i), find the coordinates of the stationary point curve.	t on the [4]	
	(iii)	Determine the nature of the stationary point, giving a reason for your answer.	[2]	
3)		Perentiate, with respect to x ,		
		$(1-2x)^{20}$,	[2]	
		$x^2 \ln x$, $\tan(2\pi x + 1)$	[3]	
	(iii)	$\frac{\tan(2x+1)}{x}.$	[3]	
4)	A so	olid circular cylinder has radius r cm and height h cm. The volume of the cylinder is 1000 cm ³ .		
	(i)	Find an expression for h in terms of r .	[2]	
	(ii)	Hence show that the total surface area, $A \text{ cm}^2$, of the cylinder is given by		
		$A = 2\pi r^2 + \frac{2000}{r}.$	[2]	
	(iii)	Given that r varies, find, correct to 2 decimal places, the value of r when A has a stationary	value. [4]	
	(iv)	Find this stationary value of A and determine its nature.	[3]	
5)	The e	quation of a curve is $y = xe^{-\frac{x}{2}}$.		
	(i) S	quation of a curve is $y = xe^{-\frac{x}{2}}$. Show that $\frac{dy}{dx} = \frac{1}{2}(2-x)e^{-\frac{x}{2}}$.	[3]	
	(ii) I	Find an expression for $\frac{d^2y}{dy^2}$.	[2]	
	The c	urve has a stationary point at M .		
	jiii) I	Find the coordinates of M .	[2]	
	(iv) I	Determine the nature of the stationary point at <i>M</i> .	[2]	