Differentiation and its applications 2

1) Differentiate with respect to x
(i) $\sqrt{1+x^{3}}$,
(ii) $x^{2} \cos 2 x$.
2) A curve has equation $y=\frac{\ln x}{x^{2}}$, where $x>0$.
(i) Find the exact coordinates of the stationary point of the curve.
(ii) Show that $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ can be written in the form $\frac{a \ln x+b}{x^{4}}$, where a and b are integers.
(iii) Hence, or otherwise, determine the nature of the stationary point of the curve.
3) Given that a curve has equation $y=x^{2}+64 \sqrt{x}$, find the coordinates of the point on the curve where $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=0$.
4) Given that $y=\frac{x+2}{(4 x+12)^{1 / 2}}$, show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{k(x+4)}{(4 x+12)^{3 / 2}}$, where k is a constant to be found.
5) (i) Find $\quad \frac{\mathrm{d}}{\mathrm{d} x}\left(x \mathrm{e}^{3 x}-\frac{\mathrm{e}^{3 x}}{3}\right)$.
6) A curve has equation $y=\frac{2 x}{x^{2}+9}$.
(i) Find the x-coordinate of each of the stationary points of the curve.
(ii) Given that x is increasing at the rate of 2 units per second, find the rate of increase of y when $x=1$.

The diagram shows part of the curve $y=27-x^{2}$. The points P and S lie on this curve. The points Q and R lie on the x-axis and $P Q R S$ is a rectangle. The length of $O Q$ is t units.
(i) Find the length of $P Q$ in terms of t and hence show that the area, A square units, of $P Q R S$ is given by

$$
\begin{equation*}
A=54 t-2 t^{3} . \tag{2}
\end{equation*}
$$

(ii) Given that t can vary, find the value of t for which A has a stationary value.
(iii) Find this stationary value of A and determine its nature.

