1)

(i) $\frac{1}{2} 3 x^{2}\left(1+x^{3}\right)^{-\frac{1}{2}}$
(ii) $2 x \cos 2 x-2 x^{2} \sin 2 x$
2)
(i) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x^{2}(1 / x)-2 x \ln x}{x^{4}}$

$$
=\frac{1-2 \ln x}{x^{3}}
$$

when $\frac{\mathrm{d} y}{\mathrm{~d} x}=0, \ln x=1 / 2, x=\mathrm{e}^{1 / 2}, y=\frac{1 / 2}{\mathrm{e}}$,

$$
y=\frac{1}{2 \mathrm{e}}
$$

(ii) $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\frac{x^{3}(-2 / x)-(1-2 \ln x) 3 x^{2}}{x^{6}}$

$$
=\frac{-5+6 \ln x}{x^{4}}
$$

(iii) when $x=\mathrm{e}^{1 / 2}, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}$ is -ve $\left(=\frac{-2}{\mathrm{e}^{2}}\right), \max$

B1,B1
B1 for $\frac{1}{2}\left(1+x^{3}\right)^{-\frac{1}{2}}$
B1 for $\times 3 x^{2}$
[2]
M1

A2,1,0	-1 each error
$\lceil 3\rceil$	

M1
A1, A1 A1 for a, A1for b
B3,2,1,0 $\quad-1$ each error

M1 for a correct method
M1 for attempt to solve $\frac{d y}{d x}=0$
M1 for attempt at $2^{\text {nd }}$ derivative
A1 must be from correct working only
3) $2 x+32 x^{-1 / 2}$

B1+B1
$2-16 x^{-3 / 2}$
B1+B1
Equate to 0 and solve
M1
$x=4$
A1
$y=144$
4)
(i) $\frac{\mathrm{d}}{\mathrm{d} x}(4 x+12)^{1 / 2}=\frac{1}{2}(4 x+12)^{-1 / 2} \times 4$ or $\frac{\mathrm{d}}{\mathrm{d} x}(4 x+12)^{-1 / 2}=\frac{-1}{2}(4 x+12)^{-3 / 2} \times 4$

Uses quotient rule or product rule

$$
\frac{(4 x+12)^{1 / 2}-2(x+2)(4 x+12)^{-1 / 2}}{4 x+12} \text { or }(4 x+12)^{-1 / 2}-2(x+2)(4 x+12)^{-3 / 2}
$$

Express with common denominator of $(4 x+12)^{n}$

$$
\frac{2(x+4)}{(4 x+12)^{3 / 2}} \text { or } k=2
$$

5)

(i) $\begin{aligned} & 3 x \mathrm{e}^{3 x}+\mathrm{e}^{3 x}-\mathrm{e}^{3 x} \\ & =3 x \mathrm{e}^{3 x}\end{aligned}$
(ii) $\int x \mathrm{e}^{3 x} \mathrm{~d} x=\frac{1}{3}\left(x \mathrm{e}^{3 x}-\frac{\mathrm{e}^{3 x}}{3}\right)$
6)
(i) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\left(x^{2}+9\right) 2-2 x(2 x)}{\left(x^{2}+9\right)^{2}}$ $=\frac{18-2 x^{2}}{\left(x^{2}+9\right)^{2}}$, turning points, $x= \pm 3$
(ii) $\frac{\mathrm{d} x}{\mathrm{~d} t}=2$

$$
\frac{\mathrm{d} y}{\mathrm{~d} t}=2 \times\left(\frac{16}{100}\right)
$$

$$
=0.32 \text { or } \frac{8}{25}
$$

M1, A1, B 1 $[3]$	M1 for attempt to differentiate a product. A1 for correct product. B1 for $-\mathrm{e}^{3 x}$
$\begin{aligned} & \text { DM1 } \\ & \text { DM1 } \\ & \text { A1 } \end{aligned}$	DM1 for recognition of the 'reverse' to (i) DM1 for dealing with ' 3 ' A1 all correct (condone omission of c)
[3]	
B2,1,0	Attempt to differentiate a quotient -1 each error
M1	M1 for correct attempt to find the turning points.
A1	A1 for both
B1	B1 for use of $\frac{\mathrm{d} x}{\mathrm{~d} t}=2$
M1	M1 for use of rates of change
A1	
$\lceil 3\rceil$	

7)

B1
B1
(ii) $\frac{\mathrm{d} A}{\mathrm{~d} t}=54-6 t^{2}$

Solve $\frac{\mathrm{d} A}{\mathrm{~d} t}=0$ M1
$t=3$
(iii) Substitute for t in expression for $A \quad$ M1
$A=108$ only $\quad \mathrm{A} 1$
completely correct method and maximum B1

