1) (i)
$$y = xe^{2x} \quad d/dx(e^{2x}) = 2e^{2x}$$

 $\rightarrow dy/dx = e^{2x} + 2x e^{2x}$
 $\rightarrow d^2y/dx^2 = 2e^{2x} + 2e^{2x} + 4xe^{2x}$
(ii) $dy/dx = 0$ when $1+2x = 0 \rightarrow x = -\frac{1}{2}$
 $\rightarrow y = -\frac{1}{2}e^{-1} = -\frac{1}{2e}$.
(iii) $fx = -\frac{1}{2} \rightarrow +ve$ result
 $\rightarrow Minimum$
or gradient goes $-,0,+$)
or y value to left or right of $(-\frac{1}{2}) > -\frac{1}{2e}$)
[2]
B1
M1A1
M1A1
Sets his dy/dx to 0 and tries to solve.
(3]
M1
A1
Looks at sign.
Correct deduction from correct x.
(or by any other valid method)

2)
(i)
$$50 = A + B$$

 $\frac{dy}{dx} = 2Ae^{2x} - Be^{-x}$
 $-20 = 2A - B$
leads to $A = 10$ and $B = 40$
(ii) $\frac{dy}{dx} = 20e^{2x} - 40e^{-x}$, $20e^{2x} = 40e^{-x}$
M1 for attempt to differentiate
A1 all correct
DM1 A1
[5]
M1 for attempt to solve equations.
M1 for equating to zero and attempt at solution

$$e^{3x} = 2$$

$$x = \frac{1}{3} \ln 2 \text{ der } 0.231$$

$$y = 47.6$$

$$d$$
(iii)
$$\frac{d^2 y}{dx^2} = 40e^{2x} + 40e^{-x}$$
Always +ve, so min
(Iii)
$$\frac{d^2 y}{dx^2} = 40e^{2x} + 40e^{-x}$$
(III)
$$\frac{d^2 y}{dx^2} = 40e^{2x} + 40e^{2x} + 40e^{2x}$$
(III)
$$\frac{d^2 y}{dx^2} = 40e^{2x} + 40e^{2x}$$
(III)
$$\frac{d^2 y}{dx^$$

3)

(ii)
$$x^2 \frac{1}{x} + 2x \ln x$$

9 (i) $20 \times -2(1-2x)^{19}$

(iii) $\frac{x(2 \sec^2(2x+1)) - \tan(2x+1)}{x^2}$

(i) $\pi r^2 h = 1000$, leading to	M1	M1 for attempt to use volume
$h=\frac{1000}{\pi r^2}$	A1 [2]	
(ii) $A = 2\pi rh + 2\pi r^2$ leading to given answer $A = 2\pi r^2 + \frac{2000}{r}$	M1 A1 [2]	M1 for attempt to use surface area GIVEN ANSWER
(iii) $\frac{dA}{dr} = 4\pi r - \frac{2000}{r^2}$ when $\frac{dA}{dr} = 0$, $4\pi r = \frac{2000}{r^2}$ leading to $r = 5.42$	M1 A1 DM1 A1	M1 for attempt to differentiate and set to 0 DM1 for solution
(iv) $\frac{d^2 A}{dr^2} = 4\pi + \frac{4000}{r^3}$	[4] M1	M1 for second derivative method or gradient method'
+ ve when $r = 5.42$ so min value $A_{\min}=554$	A1 A1	A1 for minimum, can be given if r incorrect but + ve

5)

4)

(i) $d(e^{-1/2x})/dx = -\frac{1}{2}e^{-1/2x}$	B1	÷
$d(xe^{-1/2x})/dx = e^{-1/2x} + x()$	$= \frac{1}{2} (2 - x) e^{-1/2x}$ M1	A1
(ii) $d^2y / dx^2 = -\frac{1}{2}e^{-\frac{1}{2}x} + (-\frac{1}{2})(e^{-\frac{1}{2}x})$	$e^{-1/2x} - \frac{1}{2}x e^{-1/2x}$ [= - $\frac{1}{4}(4-x)e^{-1/2x}$] M1	A 1
(iii) $dy/dx = 0$ when $2 - x = 0$ =	⇒ $x = 2, y = 2e^{-1}$ [≈0.736] M1	A1
(iv) When $x = 2$, $d^2y/dx^2 < 0$ [=	$-\frac{1}{2}e^{-1} \approx -0.184$] \Rightarrow maximum M1	A1

6)

Differentiation and its applications Answers