1)

> (i) $y=x \mathrm{e}^{2 x} \quad \mathrm{~d} / \mathrm{d} x\left(\mathrm{e}^{2 x}\right)=2 \mathrm{e}^{2 x}$
> $\rightarrow \mathrm{~d} y / \mathrm{d} x=\mathrm{e}^{2 x}+2 x \mathrm{e}^{2 x}$
> $\rightarrow \mathrm{~d}^{2} y / d \mathrm{x}^{2}=2 \mathrm{e}^{2 x}+2 \mathrm{e}^{2 x}+4 x \mathrm{e}^{2 x}$
(ii) $\mathrm{d} y / \mathrm{d} x=0$ when $1+2 x=0 \rightarrow x=-1 / 2$
$\rightarrow \quad y=-1 / 2 \mathrm{e}^{-1}=-\frac{1}{2 \mathrm{e}}$.
(iii) If $x=-1 / 2 \rightarrow+$ ve result
$\rightarrow \quad$ Minimum
or gradient goes $-, 0,+$)
or y value to left or right of $\left.(-1 / 2)>-\frac{1}{2 e}\right)$
2)

$$
\text { (i) } \begin{aligned}
& 50=A+B \\
& \frac{\mathrm{~d} y}{\mathrm{~d} x}=2 A \mathrm{e}^{2 x}-B \mathrm{e}^{-x} \\
& -20=2 A-B \\
& \text { leads to } A=10 \text { and } B=40
\end{aligned}
$$

(ii) $\frac{\mathrm{d} y}{\mathrm{~d} x}=20 \mathrm{e}^{2 x}-40 \mathrm{e}^{-x}, 20 \mathrm{e}^{2 x}=40 \mathrm{e}^{-x}$ $\mathrm{e}^{3 x}=2$
$x=\frac{1}{3} \ln 2$ or 0.231
$y=47.6$
(iii) $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=40 \mathrm{e}^{2 x}+40 \mathrm{e}^{-x}$

Always + ve, so min

B1
M1A1
M1A1
[5]
M1 A1

A1
[3]
M1
A1
[2]

Anywhere - even if product not used Use of correct formula for " $u v$ ". co

Use of product formula again. co.

Sets his $\mathrm{d} y / \mathrm{d} x$ to 0 and tries to solve.
co - ag - beware fortuitous results.

Looks at sign.
Correct deduction from correct x. (or by any other valid method)

M1 for attempt to differentiate
A1 all correct
DM1 for attempt to solve equations.
[5]

M1
M1
3)

9 (i) $20 \times-2(1-2 x)^{19}$
(ii) $x^{2} \frac{1}{x}+2 x \ln x$
(iii)

$$
\frac{x\left(2 \sec ^{2}(2 x+1)\right)-\tan (2 x+1)}{x^{2}}
$$

B1,B1
[2]

B1 for 20 and $(1-2 x)^{19}$
B1 for -2

M1 for attempt to differentiate a
product.
B1 for $\frac{1}{x}$

M1 for attempt to differentiate a quotient.
B1 for differentiation of $\tan (2 x+1)$
4)
(i) $\pi r^{2} h=1000$, leading to

$$
h=\frac{1000}{\pi r^{2}}
$$

(ii) $A=2 \pi r h+2 \pi r^{2}$
leading to given answer
$A=2 \pi r^{2}+\frac{2000}{r}$
(iii) $\frac{\mathrm{d} A}{\mathrm{~d} r}=4 \pi r-\frac{2000}{r^{2}}$
when $\frac{\mathrm{d} A}{\mathrm{~d} r}=0,4 \pi r=\frac{2000}{r^{2}}$
leading to $r=5.42$
(iv) $\frac{\mathrm{d}^{2} A}{\mathrm{~d} r^{2}}=4 \pi+\frac{4000}{r^{3}}$

+ ve when $r=5.42$ so min value
$A_{\text {min }}=554$
[2]
M1
A1
[2]
M1
A1
DM1
A1
[4]

M1

A1
A1

M1 for attempt to use volume

M1 for attempt to use surface area GIVEN ANSWER

M1 for attempt to differentiate and set to 0
DM1 for solution

M1 for second derivative method or gradient method'

A1 for minimum, can be given if r incorrect but + ve
5)

| (i) $d\left(e^{-1 / 2 x}\right) / d x=-1 / 2 e^{-1 / 2 x}$ | |
| :--- | :--- | :--- |
| $d\left(x e^{-1 / 2 x}\right) / d x=e^{-1 / 2 x}+x(\ldots)=1 / 2(2-x) e^{-1 / 2 x}$ | B1 |
| (ii) $d^{2} y / d x^{2}=-1 / 2 e^{-1 / 2 x}+(-1 / 2)\left(e^{-1 / 2 x}-1 / 2 x e^{-1 / 2 x}\right) \quad\left[=-1 / 4(4-x) e^{-1 / 2 x}\right]$ | M1 A1 |
| (iii) $d y / d x=0$ when $2-x=0 \quad \Rightarrow \quad x=2, y=2 e^{-1} \quad[\approx 0.736]$ | M1 A1 |
| (iv) When $x=2, d^{2} y / d x^{2}<0 \quad\left[=-1 / 2 e^{-1} \approx-0.184\right] \Rightarrow$ maximum | M1 A1 |
| M1 A1 | |

6)
