Differentiation 2 ANSWERS

1)

$-9-$
M11/5/MATME/SP1/ENG/TZ1/XX/M
5. (a) $\frac{\mathrm{d}}{\mathrm{d} x} \ln x=\frac{1}{x}, \frac{\mathrm{~d}}{\mathrm{~d} x} x^{2}=2 x$ (seen anywhere) A1A1 attempt to substitute into the quotient rule (do not accept product rule) M1
e.g. $\frac{x^{2}\left(\frac{1}{x}\right)-2 x \ln x}{x^{4}}$
correct manipulation that clearly leads to result
e.g. $\frac{x-2 x \ln x}{x^{4}}, \frac{x(1-2 \ln x)}{x^{4}}, \frac{x}{x^{4}}-\frac{2 x \ln x}{x^{4}}$
$g^{\prime}(x)=\frac{1-2 \ln x}{x^{3}} \quad$ AG

(b) evidence of setting the derivative equal to zero [4 marks] e.g. $g^{\prime}(x)=0,1-2 \ln x=0$
$\ln x=\frac{1}{2}$
A1
$x=\mathrm{e}^{\frac{1}{2}} \quad$ A1 $\begin{array}{r}\mathrm{N} 2 \\ \\ {[3 \text { marks }]}\end{array}$
Total [7 marks]
2)

4. METHOD 1 (quotient)

derivative of numerator is 6
derivative of denominator is $-\sin x \quad$ (A1)
attempt to substitute into quotient rule (M1)
correct substitution A1
e.g. $\frac{(\cos x)(6)-(6 x)(-\sin x)}{(\cos x)^{2}}$
substituting $x=0$
e.g. $\frac{(\cos 0)(6)-(6 \times 0)(-\sin 0)}{(\cos 0)^{2}}$
$h^{\prime}(0)=6$

METHOD 2 (product)

$h(x)=6 x \times(\cos x)^{-1}$
derivative of $6 x$ is 6 (A1)
derivative of $(\cos x)^{-1}$ is $\left(-(\cos x)^{-2}(-\sin x)\right)$ (A1)
attempt to substitute into product rule (M1)
correct substitution
A1
e.g. $(6 x)\left(-(\cos x)^{-2}(-\sin x)\right)+(6)(\cos x)^{-1}$
substituting $x=0$
e.g. $(6 \times 0)\left(-(\cos 0)^{-2}(-\sin 0)\right)+(6)(\cos 0)^{-1}$
$h^{\prime}(0)=6$
A1
9. (a) B, D
(b) (i) $\quad f^{\prime}(x)=-2 x \mathrm{e}^{-x^{2}}$

Note: Award $\boldsymbol{A l}$ for $\mathrm{e}^{-\boldsymbol{x}^{2}}$ and $\boldsymbol{A l}$ for $-2 x$.
(ii) finding the derivative of $-2 x$, i.e. -2
evidence of choosing the product rule

$$
\text { e.g. } \begin{aligned}
-2 \mathrm{e}^{-x^{2}}-2 x \times-2 x \mathrm{e}^{-x^{2}} \\
-2 \mathrm{e}^{-x^{2}}+4 x^{2} \mathrm{e}^{-x^{2}} \\
f^{\prime \prime}(x)=\left(4 x^{2}-2\right) \mathrm{e}^{-x^{2}}
\end{aligned}
$$

(c) valid reasoning
e.g. $f^{\prime \prime}(x)=0$
attempting to solve the equation
e.g. $\left(4 x^{2}-2\right)=0$, sketch of $f^{\prime \prime}(x)$
$p=0.707\left(=\frac{1}{\sqrt{2}}\right), q=-0.707\left(=-\frac{1}{\sqrt{2}}\right)$
(d) evidence of using second derivative to test values on either side of POI e.g. finding values, reference to graph of $f^{\prime \prime}$, sign table

correct working

e.g. finding any two correct values either side of POI,
checking sign of $f^{\prime \prime}$ on either side of POI
reference to sign change of $f^{\prime \prime}(x)$
R1
10. (a)

A1A1A1
N3
Note: Award A1 for approximately correct shape with inflexion/ change of curvature, A1 for maximum skewed to the left,
A1 for asymptotic behaviour to the right.
(b)

$$
\begin{array}{ll}
\text { (i) } & x=3.33 \\
\text { (ii) } & \text { correct interval, with right en } \\
& \text { e.g. } 0<x \leq 3.33,0 \leq x<3 \frac{1}{3}
\end{array}
$$

Note: Accept any inequalities in the right direction.

$$
\begin{array}{ll}
\text { (c) valid approach } \\
\text { e.g. quotient rule, product rule } & \text { (MI) } \\
2 \text { correct derivatives (must be seen in product or quotient rule) } \\
\text { e.g. } 20,0.3 \mathrm{e}^{0.3 x} \text { or }-0.3 \mathrm{e}^{-0.3 x} \\
\text { correct substitution into product or quotient rule } \\
\text { e.g. } \frac{20 \mathrm{e}^{0.3 x}-20 x(0.3) \mathrm{e}^{0.3 x}}{\left(\mathrm{e}^{0.3 x}\right)^{2}}, 20 \mathrm{e}^{-0.3 x}+20 x(-0.3) \mathrm{e}^{-0.3 x} \\
\text { correct working } \\
\text { e.g. } \frac{20 \mathrm{e}^{0.3 x}-6 x \mathrm{e}^{0.3 x}}{\mathrm{e}^{0.6 x}}, \frac{\mathrm{e}^{0.3 x}(20-20 x(0.3))}{\left(\mathrm{e}^{0.3 x}\right)^{2}}, \mathrm{e}^{-0.3 x}(20+20 x(-0.3)) & \boldsymbol{A 1} \\
f^{\prime}(x)=\frac{20-6 x}{\mathrm{e}^{0.3 x}}
\end{array}
$$

QUESTION 10

(a) (i) $-1.15,1.15$
A1A1
N2
(ii) recognizing that it occurs at P and Q
e.g. $x=-1.15, x=1.15$

$$
k=-1.13, k=1.13
$$

A1A1
(b) evidence of choosing the product rule e.g. $u v^{\prime}+v u^{\prime}$
derivative of x^{3} is $3 x^{2}$
(A1)
derivative of $\ln \left(4-x^{2}\right)$ is $\frac{-2 x}{4-x^{2}}$
correct substitution
A1
e.g. $x^{3} \times \frac{-2 x}{4-x^{2}}+\ln \left(4-x^{2}\right) \times 3 x^{2}$

$$
g^{\prime}(x)=\frac{-2 x^{4}}{4-x^{2}}+3 x^{2} \ln \left(4-x^{2}\right)
$$

(c)

(d) $\quad w=2.69, \quad w<0$
A1A2
N2
[3 marks]

Total [14 marks]
6)
(a) valid approach R1e.g. $f^{\prime \prime}(x)=0$, the max and min of f^{\prime} gives the points of inflexion on $f$$-0.114,0.364($ accept $(-0.114,0.811)$ and $(0.364,2.13)) \quad$ A1A1
(b) METHOD 1
graph of g is a quadratic function R1 N1
a quadratic function does not have any points of inflexion R1 N1
METHOD 2
graph of g is concave down over entire domain R1 N1
therefore no change in concavity R1 N1
METHOD 3
$g^{\prime \prime}(x)=-144$ R1 N1
therefore no points of inflexion as $g^{\prime \prime}(x) \neq 0$ R1 N1

