		- 9 -	M11/5/MATME/SP1/ENG/7	TZ1/XX/M
5.	(a)	$\frac{d}{dx}\ln x = \frac{1}{x}, \frac{d}{dx}x^2 = 2x$ (seen anywhere)	AIAI	
		attempt to substitute into the quotient rule (do not a e.g. $\frac{x^2\left(\frac{1}{x}\right) - 2x \ln x}{x^4}$	Accept product rule) M1	
		correct manipulation that clearly leads to result e.g. $\frac{x-2x\ln x}{x^4}$, $\frac{x(1-2\ln x)}{x^4}$, $\frac{x}{x^4} - \frac{2x\ln x}{x^4}$	AI	
		$g'(x) = \frac{1 - 2\ln x}{x^3}$	AG	N0
	(b)	evidence of setting the derivative equal to zero e.g. $g'(x) = 0$, $1 - 2 \ln x = 0$	(M1)	[4 marks]
		$\ln x = \frac{1}{2}$	AI	
		$x = e^{\frac{1}{2}}$	AI	N2 [3 marks]
			Tota	al [7 marks]
			-9- M11/5/MAT	ME/SP1/ENG/TZ2/XX/M
		4. METHOD 1 (quotient)		

WETHOD I (quotient)		
derivative of numerator is 6 derivative of denominator is $-\sin x$	(A1) (A1)	
attempt to substitute into quotient rule	(M1)	
correct substitution e.g. $\frac{(\cos x)(6) - (6x)(-\sin x)}{(\cos x)^2}$	A1	
substituting $x = 0$ e.g. $\frac{(\cos 0)(6) - (6 \times 0)(-\sin 0)}{(\cos 0)^2}$	(A1)	
h'(0) = 6	A1	N2 [6 marks]
METHOD 2 (product)		
$h(x) = 6x \times (\cos x)^{-1}$		
derivative of $6x$ is 6 derivative of $(\cos x)^{-1}$ is $(-(\cos x)^{-2}(-\sin x))$	(A1) (A1)	
attempt to substitute into product rule correct substitution <i>e.g.</i> $(6x)(-(\cos x)^{-2}(-\sin x)) + (6)(\cos x)^{-1}$	(M1) A1	
substituting $x = 0$ e.g. $(6 \times 0) (-(\cos 0)^{-2} (-\sin 0)) + (6) (\cos 0)^{-1}$	(A1)	
h'(0) = 6	A1	N2 [6 marks]

2)

1)

9.	(a)	B, D	AIA1	N2 [2 marks]
	(b)	(i) $f'(x) = -2xe^{-x^2}$	AIAI	N2
		Note: Award A1 for e^{-x^2} and A1 for $-2x$.		
		(ii) finding the derivative of $-2x$, <i>i.e.</i> -2	(A1)	
		evidence of choosing the product rule e.g. $-2e^{-x^2} - 2x \times -2xe^{-x^2}$	(M1)	
		$-2e^{-x^{2}} + 4x^{2}e^{-x^{2}}$ $f''(x) = (4x^{2} - 2)e^{-x^{2}}$	A1 AG	N0 [5 marks]
	(c)	valid reasoning e.g. $f''(x) = 0$	R1	
		attempting to solve the equation e.g. $(4x^2 - 2) = 0$, sketch of $f''(x)$	(M1)	
		$p = 0.707 \ \left(=\frac{1}{\sqrt{2}}\right), \ q = -0.707 \ \left(=-\frac{1}{\sqrt{2}}\right)$	AIA1	N3 [4 marks]
	(d)	evidence of using second derivative to test values on either side of POI <i>e.g.</i> finding values, reference to graph of f'' , sign table	M1	
		correct working e.g. finding any two correct values either side of POI, checking sign of f'' on either side of POI	AIAI	
		reference to sign change of $f''(x)$	R1	N0 [4 marks]
			Total	[15 marks]

correct interval, with both end points A1 N3 *e.g* $6.67 < x \le 20$, $6\frac{2}{3} \le x < 20$

[4 marks]

Total [15 marks]

(d)

QUESTION 10

(a)	(i)	-1.15, 1.15	AIAI	N2
	(ii)	recognizing that it occurs at P and Q e.g. $x = -1.15$, $x = 1.15$	(M1)	
		$k = -1.13, \ k = 1.13$	AIAI	N3 [5 marks]
(b)		ence of choosing the product rule $uv' + vu'$	(M1)	
	deriv	vative of x^3 is $3x^2$	(A1)	
	deriv	variative of $\ln(4-x^2)$ is $\frac{-2x}{4-x^2}$	(A1)	
		ect substitution	A1	
	e.g.	$x^{3} \times \frac{-2x}{4-x^{2}} + \ln(4-x^{2}) \times 3x^{2}$		
		$g'(x) = \frac{-2x^4}{4-x^2} + 3x^2 \ln(4-x^2)$	AG	NO
				[4 marks]
(c)		1		

Total [14 marks]

N2

N2

(a)	valid approach e.g. $f''(x) = 0$, the max and min of f' gives the points of inflexion on f	<i>R1</i>	
	-0.114, 0.364 (accept (-0.114, 0.811) and (0.364, 2.13))	A1A1	N1N1
(b)	METHOD 1		
	graph of g is a quadratic function	R1	N1
	a quadratic function does not have any points of inflexion	R1	N1
	METHOD 2		
	graph of g is concave down over entire domain	<i>R1</i>	N1
	therefore no change in concavity	R1	N1
	METHOD 3		
	g''(x) = -144	R 1	N1
	therefore no points of inflexion as $g''(x) \neq 0$	R1	N1
			[5 marks]

6)