(C6)

$$\frac{d}{dx}\left(e^{\frac{x}{3}}\right) = \frac{1}{3}e^{\frac{x}{3}}$$
(A1)(A1)

$$\frac{d}{dx}(5\cos^{2}x) = -10\cos x \sin x$$
(A1)(A1)(A1)

$$f'(x) = \frac{1}{3}e^{\frac{x}{3}} - 10\cos x \sin x$$
(A1)

(a)
$$f'(x) = 3x^2 - 4x - 0$$
 (A1)(A1)(A1)
= $3x^2 - 4x$ (C3)

(b) Gradient =
$$f'(2)$$
 (M1)
= $3 \times 4 - 4 \times 2$ (A1)
= 4 (A1) (C3)

1)

2)

$$f(x) = 6x^{\frac{2}{3}}$$
(A2)
$$f'(x) = 4x^{-\frac{1}{3}} \left(= \frac{4}{x^{\frac{1}{3}}} = \frac{4}{\sqrt[3]{x}} \right)$$
(A2)(A2) (C6)

METHOD 2

$$f(x) = 6(x^{2})^{\frac{1}{3}}$$
(A1)

$$f'_{3}(x) = 6 \times \frac{1}{3}(x^{2})^{-\frac{2}{3}} \times 2x$$
(A2)(A2)

$$f'_{3}(x) = 4x^{-\frac{1}{3}} \leq \leq \leq$$
(A1) (C6)

$$\pm \pm \pm \pm \pm$$

4) (a)
$$f'(x) = 5(3x+4)^4 \times 3 (=15(3x+4)^4)$$
 (A1)(A1)(A1) (C3)

 $x \times x$

5) (a)
$$f'(x) = 3(2x+7)^2 \times 2$$
 (A1)(A1)
= $6(2x+7)^2 (= 24x^2 + 168x + 294)$ (C2)

(b)
$$g'(x) = 2\cos(4x)(-\sin(4x))(4)$$
 (A1)(A1)(A1)(A1)
= $-8\cos(4x)\sin(4x) (= -4\sin(8x))$ (C4)
x
x
x
x

		Differentiation 1 Answers	P1 non	calc
6)	(a)	$f'(x) = 5e^{5x}$	A1A1	N2
	(b)	$g \overline{r}(x) = 2\cos 2x$	AIAI	N2
	(c)		(M1)	
		$= e^{5x} (2\cos 2x) + \sin 2x (5e^{5x})$	A1	N2
7)	(a)	METHOD 1		
		$f'(x) = -6\sin 2x + 2\sin x \cos x$	AIAIAI	
		$=-6\sin 2x+\sin 2x$	A1	
		$=-5\sin 2x$	AG	N0
		=		
8)	(a)	$ \frac{dy_2}{dx} = \frac{1 - \cos 2x}{2} = \frac{1 - \cos 2x}{2} $	A1	N1
	(b)	$\frac{f(x) = 3\cos 2x + \frac{1}{2} - \frac{1}{2}\cos 2x}{\frac{1}{2}\cos 2x + \tan^2 x} + \tan^2 x + \tan^2 x + \tan^2 x$	AIAI	N2

(b)
$$\frac{dx}{dx} = \frac{cgs^2 x}{cgs^2 x} + tarr 2 accept x sec x + tarr 4$$

$$f(x) = \frac{cgs^2 x}{2} cos 2x + \frac{1}{2}$$
(c)
$$METHOD \frac{5}{2} (-\sin 2x)$$

Evidence of using the quotient rule (M1)

$$\frac{dy}{k dx} = \frac{x \times \frac{1}{x} - \ln x}{(= k.57)}$$
A1A1

$$\frac{dy}{dx} = \frac{1 - \ln x}{x^2}$$
N3

METHOD 2

$y = x^{-1} \ln x$	
Evidence of using the product rule	(M1)
dy 1	

$$\frac{dy}{dx} = x^{-1} \times \frac{1}{x} + \ln x (-1)(x^{-2})$$

$$\frac{dy}{dx} = \frac{1}{x^2} - \frac{\ln x}{x^2}$$
AIA1

$$\frac{1y}{1x} = \frac{1}{x^2} - \frac{\ln x}{x^2}$$
 N3

9)

10)

(a)	METHOD 1		
	$f''(x) = 3(x-3)^2$	A2	N2
	METHOD 2		
	attempt to expand $(x-3)^3$	(M1)	
	<i>e.g.</i> $f'(x) = x^3 - 9x^2 + 27x - 27$		
	$f''(x) = 3x^2 - 18x + 27$	A1	N2
b)	f'(3) = 0, f''(3) = 0	AI	N1
c)	METHOD 1		
	f'' does not change sign at P	R1	
	evidence for this	R1	N0
	METHOD 2		
	f' changes sign at P so P is a maximum/minimum (<i>i.e.</i> not inflexion)	<i>R1</i>	
	evidence for this	R1	<i>N0</i>
	METHOD 3		
	finding $f(x) = \frac{1}{4}(x-3)^4 + c$ and sketching this function	<i>R1</i>	
	indicating minimum at $x = 3$	R1	N0
		[5	marks]
(a)	evidence of choosing the product rule	(M1)	
	e.g. uv' + vu'		
	correct derivatives $\cos x$, 2	(A1)(A1)	
	$g'(x) = 2x\cos x + 2\sin x$	<i>A1</i>	N4