1)

The diagram below shows part of the graph of the **gradient** function, y = f'(x).

(a) On the grid below, sketch a graph of y = f''(x), clearly indicating the x-intercept.

[2 marks]

(b) Complete the table, for the graph of y = f(x).

[2 marks]

		x-coordinate
(i)	Maximum point on f	
(ii)	Inflexion point on f	

(c) Justify your answer to part (b) (ii). [Maximum mark: 6]

[2 marks]

2)

Let $f(x) = \cos 2x$ and $g(x) = \ln(3x-5)$.

(a) Find f'(x).

[2 marks]

(b) Find g'(x).

[2 marks]

(c) Let $h(x) = f(x) \times g(x)$. Find h'(x).

[2 marks]

The function f is defined as $f(x) = e^x \sin x$, where x is in radians. Part of the curve of f is shown below.

There is a point of inflexion at A, and a local maximum point at B. The curve of f intersects the x-axis at the point C.

(a) Write down the *x*-coordinate of the point C.

[1 mark]

- (b) (i) Find f'(x).
 - (ii) Write down the value of f'(x) at the point B.

[4 marks]

(c) Show that $f''(x) = 2e^x \cos x$.

[2 marks]

- (d) (i) Write down the value of f''(x) at A, the point of inflexion.
 - (ii) Hence, calculate the coordinates of A.

[4 marks]

[Maximum mark: 6]

4) NC

Part of the graph of $f(x) = ax^3 - 6x^2$ is shown below.

The point P lies on the graph of f. At P, x = 1.

- (a) Find f'(x). [2 marks]
- (b) The graph of f has a gradient of 3 at the point P. Find the value of a. [4 marks]
- 5) C Let $f(x) = x^3 4x + 1$.
 - (a) Expand $(x+h)^3$. [2 marks]
 - (b) Use the formula $f'(x) = \lim_{h \to 0} \frac{f(x+h) f(x)}{h}$ to show that the derivative of f(x) is $3x^2 4$. [4 marks]
 - (c) The tangent to the curve of f at the point P(1, -2) is parallel to the tangent at a point Q. Find the coordinates of Q. [4 marks]

- 6)C Let $f(x) = \cos(e^x)$, for $-2 \le x \le 2$.
 - (a) Find f'(x). [2 marks]
 - (b) On the grid below, sketch the graph of f'(x).

[4 marks]

