cos/sine rule ans studies

0 min

0 marks

1. Unit penalty $(U P)$ is applicable in question part (a) only.
(a) $\mathrm{AC}^{2}=625^{2}+986^{2}-2 \times 625 \times 986 \times \cos 102^{\circ}$
(M1)(A1) ($=1619072.159$)
$\mathrm{AC}=1272.43$
UP $\quad=1270 \mathrm{~m}$
(A1) (C3)
(b) $\frac{986}{\sin \mathrm{~A}}=\frac{1270}{\sin 102^{\circ}}$
(M1)(A1)(ft)

$$
\mathrm{A}=49.4^{\circ}
$$

(A1)(ft)

OR
$\frac{986}{\sin \mathrm{~A}}=\frac{1272.43}{\sin 102^{\circ}}$
$\mathrm{A}=49.3^{\circ}$
(M1)(A1)(ft)
(A1)(ft)
OR
$\cos \mathrm{A}=\left(\frac{625^{2}+1270^{2}-986^{2}}{2 \times 625 \times 1270}\right)$
(M1)(A1)(ft)
$\mathrm{A}=49.5^{\circ}$
(A1)(ft) (C3)
2. (a) $C \hat{A} B=180-2 \times 23^{\circ}$

$$
\begin{equation*}
=134^{\circ} \tag{M1}
\end{equation*}
$$

(b) $\frac{A B}{\sin 23^{\circ}}=\frac{15}{\sin 134^{\circ}}$

Note: Follow through with candidate's answer from (a)

$$
\begin{align*}
A B & =\frac{15 \sin 23^{\circ}}{\sin 134^{\circ}} \\
A B & =8.147702831 \ldots \\
& =8.15 \text { (3 s.f.) } \tag{A1}
\end{align*}
$$

3.

$$
\begin{array}{ll}
\text { (a) } & B C=\sqrt{48^{2}+57^{2}-2(48)(57) \cos 117^{\circ}} \text { (or equivalent) } \\
& \approx 89.7 \mathrm{~m}(3 \text { s.f.) } \tag{A1}
\end{array}
$$

(b) Area of $\triangle A B C=\frac{1}{2} a b \sin C=\frac{1}{2}(48)(57) \sin 117^{\circ}$

$$
\begin{equation*}
\left.=1220 \mathrm{~m}^{2} \text { (3 s.f. }\right) \tag{A1}
\end{equation*}
$$

4.

$$
\text { (a) } \begin{array}{ll}
\mathrm{AC}=19-11=8 \\
& 6^{2}=5^{2}+8^{2}-2(5)(8) \cos \mathrm{BA} \mathrm{C} \\
\Rightarrow \mathrm{BA} C=48.5^{\circ}(3 \text { s.f. }) \tag{A1}
\end{array}
$$

(b) Area $=\left(\frac{1}{2}\right)(5)(8) \sin B \hat{A} C$
$=15.0 \mathrm{~cm}^{2}$ (3 s.f.) (allow ft from part (a))
(A1) 2
5. Unit penalty applies in part (b).
(a) $\quad \sin \mathrm{ABD}=\frac{4}{9}$
$100+$ their (ABD)
126°
(A1) (C3)
Notes: Accept an equivalent trigonometrical equation involving angle ABD for the first (M1).
Radians used gives 100°. Award at most (M1)(M1)(A0) if working shown.
$B D=8 \mathrm{~m}$ leading to 127°. Award at most $(M 1)(M 1)(A 0)$
(premature rounding).
(b) $\mathrm{AC}^{2}=10^{2}+9^{2}-2 \times 10 \times 9 \times \cos (126.38 \ldots)$
(M1)(A1)
Notes: Award (M1) for substituted cosine formula. Award (A1) for correct substitution using their answer to part (a).

UP

$$
\mathrm{AC}=17.0 \mathrm{~m}
$$

(A1)(ft) (C3)
Notes: Accept 16.9 m for using 126.
Follow through from their answer to part (a).
Radians used gives 5.08. Award at most (M1)(A1)(A0)(ft) if working shown.
6. (a) (i) 8.5 (cm)
(ii) 120°
(iii) 30°
(A1) (C3)
(b) $\frac{\mathrm{BC}}{\sin 120^{\circ}}=\frac{8.5}{\sin 30^{\circ}}$
(M1)(A1)(ft)
Note: Award (M1) for correct substituted formula, (A1) for correct substitutions.

$$
\mathrm{BC}=14.7\left(\frac{17 \sqrt{3}}{2}\right)
$$

(A1)(ft) (C3)
[6]
7. Unit penalty applies in parts (b) and (c)
(a) 60°
(A1) (C1)

UP
(b) $\frac{15 \times \sqrt{15^{2}-7.5^{2}}}{2}=97.4 \mathrm{~cm}^{2}\left(97.5 \mathrm{~cm}^{2}\right)$
(A1)(M1)(A1)
Notes: Award (A1) for correct height, (M1) for substitution in the area formula, (A1) for correct answer. Accept $97.5 \mathrm{~cm}^{2}$ from taking the height to be 13 cm .

OR

$$
\frac{1}{2} \times 15^{2} \times \sin 60^{\circ}=97.4 \mathrm{~cm}^{2}
$$

$$
(\mathrm{M} 1)(\mathrm{A} 1)(\mathrm{A} 1)(\mathrm{ft}) \quad(\mathrm{C} 3)
$$

Notes: Award (M1) for substituted formula of the area of a triangle, (A1) for correct substitution, (A1)(ft) for answer.
Follow through from their answer to part (a).
If radians used award at most $(M 1)(A 1)(A 0)$.

UP (c) $97.4 \times 120=11700 \mathrm{~cm}^{3}$
(M1)(A1)(ft) (C2)
Notes: Award (M1) for multiplying their part (b) by 120.
8. (a) $\frac{\sin \mathrm{A} \hat{\mathrm{B} C}}{13.4}=\frac{\sin 30^{\circ}}{6.7}$

Note: Award (M1) for correct substituted formula, (A1) for correct substitution.

$$
\begin{align*}
& \mathrm{ABC}=90^{\circ} \tag{A1}\\
& \mathrm{A} \hat{C} B=60^{\circ}
\end{align*}
$$

(A1)(ft) (C4)
Note: Radians give no solution, award maximum (M1)(A1)(A0).
(b) $\frac{29-30}{30} \times 100$
(M1)
Note: Award (M1) for correct substitution into correct formula.

$$
\begin{equation*}
\% \text { error }=-3.33 \% \tag{A1}
\end{equation*}
$$

Note: Percentage symbol not required. Accept positive answer.
9. Note: Unit penalty (UP) applies in parts (b)(c) and (e)
(a) $\frac{\sin \mathrm{BCA}}{35}=\frac{\sin 105^{\circ}}{80}$
(M1)(A1)
Note: Award (M1) for correct substituted formula, (A1) for correct substitutions.

$$
\begin{equation*}
\mathrm{B} \hat{\mathrm{C}} \mathrm{~A}=25.0^{\circ} \tag{A1}
\end{equation*}
$$

(b) Length $\mathrm{BD}=40 \mathrm{~m}$

Angle $\mathrm{ABC}=180^{\circ}-105^{\circ}-25^{\circ}=50^{\circ}$
(A1)(ft)
Note: (ft) from their answer to (a).
$\mathrm{AD}^{2}=35^{2}+40^{2}-\left(2 \times 35 \times 40 \times \cos 50^{\circ}\right)$
(M1)(A1)(ft)
Note: Award (M1) for correct substituted formula, (A1)(ft) for correct substitutions.
UP $\quad \mathrm{AD}=32.0 \mathrm{~m}$
(A1)(ft)(G3)
Notes: If 80 is used for BD award at most $(A 0)(A 1)(f t)(M 1)(A 1)(f t)(A 1)(f t)$ for an answer of 63.4 m . If the angle $A B C$ is incorrectly calculated in this part award at most $(A 1)(A 0)(M 1)(A 1)(f t)(A 1)(f t)$.
If angle BCA is used award at most $(A 1)(A 0)(M 1)(A 0)(A 0)$.
(c) length of fence $=35+40+32$

UP
$=107 \mathrm{~m}$
(A1)(ft)(G2)
Note: (M1) for adding $35+40+$ their (b).
(d) cost per metre $=\frac{802.50}{107}$

Note: Award (M1) for dividing 802.50 by their (c).
cost per metre $=7.50$ USD (7.5 USD) $($ USD not required $)$
(A1)(ft)(G2)
(e) Area of $\mathrm{ABD}=\frac{1}{2} \times 35 \times 40 \times \sin 50^{\circ}$
$=536.2311102$
UP
$=536 \mathrm{~m}^{2}$
(A1)(ft)

Note: Award (M1) for correct substituted formula, (A1)(ft) for correct substitution, $(f t)$ from their value of $B D$ and their angle $A B C$ in (b).
(f) Volume $=0.03 \times 536$
(A1)(M1)

$$
\begin{aligned}
& =16.08 \\
& =16.1
\end{aligned}
$$

(A1)(ft)(G2)

Note: Award (A1) for 0.03, (M1) for correct formula. (ft) from their (e).
If 3 is used award at most $(A 0)(M 1)(A 0)$.
10. (a) $\mathrm{AC}^{2}=3.9^{2}+4.8^{2}-2 \times 3.9 \times 4.8 \times \cos 82^{\circ}$
$\mathrm{AC}^{2}=33.04$
$\mathrm{AC}=5.75$
(A1) 3
(b) $\frac{3.9}{\sin C}=\frac{\sqrt{33.04}}{\sin 82^{\circ}}$
$\sin C=0.671889$
$C=42.2^{\circ}$
(A1) 3
[6]
11. Unit penalty (UP) may apply in this question.
(a)

(A1)
Note: (A1) for fully labelled sketch.
(b) $\frac{\mathrm{AB}}{\sin 30}=\frac{7}{\sin 65}$

UP $\quad \mathrm{AB}=3.86 \mathrm{~cm}$
(C1)

$$
\begin{equation*}
\mathrm{AB}=3.86 \mathrm{~cm} \tag{A1}
\end{equation*}
$$

Note: (M1) for use of sine rule with correct values substituted.
(c) Angle $\mathrm{BAC}=85^{\circ}$

$$
\begin{equation*}
\text { Area }=\frac{1}{2} \times 7 \times 3.86 \times \sin 85^{\circ} \tag{A1}
\end{equation*}
$$

$$
\begin{equation*}
\mathbf{U P} \quad=13.5 \mathrm{~cm}^{2} \tag{M1}
\end{equation*}
$$

(A1)(ft) (C3)
12. Unit penalty $(\boldsymbol{U P})$ is applicable where indicated.
(a) $\frac{1}{2} 20^{2} \sin B=100$
(M1)(A1)
$B=30^{\circ}$
(AG)
Note: (M1) for correct substituted formula and (A1) for correct substitution.
$B=30^{\circ}$ must be seen or previous (A1) mark is lost.
(b) $\overline{\mathrm{AC}}^{2}=2 \times 20^{2}-2 \times 20^{2} \times \cos 30^{\circ}$
(M1)(A1)
UP

$$
\begin{equation*}
\overline{\mathrm{AC}}=10.4 \mathrm{~cm} \tag{A1}
\end{equation*}
$$

Note: (M1) for using cosine rule, (A1) for correct substitution.
Last (A1) is for the correct answer. Accept use of sine rule or any correct method e.g. $A C=2 \times 20 \sin 15^{\circ}$.

13. Note on use of radians:

In (a) the answer will be -874. Award (A0) at the last step for either + or -874.
In (b) follow through with either sign from (a) can receive (M1) (A1) ft, but in both cases the final answer of ± 947000 receives (A0) for unrealistic sign and/or for unrealistic magnitude.
(a) \quad Third angle of triangle $=180-(75+40)$
$=65^{\circ}$
(A1)
Notes: Award (A2) for 65 seen.
For use of 40° or 75° in an otherwise correct sine rule award (M1)(A0)(AO)
Length of fence: $\frac{x}{\sin 65^{\circ}}=\frac{410}{\sin 75^{\circ}}$ (sine rule)
(M1)(A1)

$$
\begin{equation*}
x=385 \mathrm{~m}(3 \text { s.f. }) \tag{A1}
\end{equation*}
$$

(b) Area $=\frac{1}{2} a b \sin c$
area $=\frac{1}{2} \times 385 \times 245 \sin 24^{\circ}$
(M1)(A1)
$=19200\left(\mathrm{~m}^{2}\right)(3$ s.f. $)$
(A1) or (G2) 3
14. (a) Area $=\frac{1}{2} \times 14 \times 8 \sin 110^{\circ}$
$=52.62278676 \mathrm{~m}^{2}$
$=52.6 \mathrm{~m}^{2}$ (3s.f)
(b) $\frac{\sin C}{8}=\frac{\sin 110^{\circ}}{18}$ (or equivalent)
$\sin C=\frac{8 \times \sin 110^{\circ}}{18}$
$C=24.68575369$
$C=24.7^{\circ}$ (3s.f.)
Note: Accept all answers obtained from all appropriate methods, given to the correct degree of accuracy.
15. (a) $\mathrm{PR}^{2}=7.8^{2}+11.1^{2}-2 \times 7.8 \times 11.1 \times \cos 102^{\circ}$
$=60.84+123.21-(-36.00)$
$=220.05$
$\mathrm{PR}=14.8 \mathrm{~m}($ or $\sqrt{220.05})$
(A1) 2
(b) $\frac{11.1}{\sin \hat{R}}=\frac{14.8}{\sin 102^{\circ}}$ (Follow through with candidate's answer to part (a))
$\Rightarrow \sin \hat{R}=\frac{11.1 \sin 102^{\circ}}{14.8}=0.7336$
$\Rightarrow \hat{\mathrm{R}}=47.2^{\circ}$ (or 47.0° from $\sqrt{220.05}$)
(A1) 2
(c)

Angle $\mathrm{QPR}=180^{\circ}-\left(102^{\circ}+47.2^{\circ}\right)$
$=30.8^{\circ}\left(\right.$ or $\left.31.0^{\circ}\right)$
\Rightarrow RPM $=90^{\circ}-30.8^{\circ}=59.2^{\circ}$ (or 59.0°)
$\sin 59.2^{\circ}=\frac{H}{14.8}$
$\Rightarrow H=14.8 \sin 59.2^{\circ}=12.7 \mathrm{~m}$
OR
$\cos 30.8^{\circ}=\frac{H}{14.8}$
$\Rightarrow H=14.8 \cos 30.8^{\circ}=12.7 \mathrm{~m}$
Therefore, $h=12.7-6.5$
$=6.2 \mathrm{~m}$
(A1) 3
[7]
16. (a) $\mathrm{BD}^{2}=15^{2}+20^{2}-2 \times 15 \times 20 \times \cos 110^{\circ}$

Note: Award (M1) for using the cosine rule, award (A1) for correct substitution.
$\mathrm{BD}^{2}=830.212$
$\mathrm{BD}=28.8$
OR
$\mathrm{BD}=28.8$
(b) $\frac{28.81}{\sin \mathrm{C}}=\frac{22}{\sin 30^{\circ}}$
$\mathrm{C}=40.9^{\circ}$
OR
$\mathrm{C}=40.9^{\circ}$
(c) $\mathrm{BD}=30$
(A1) 1
(d) $\frac{30}{\sin C}=\frac{22}{\sin 30^{\circ}}$
$\mathrm{C}=43.0^{\circ}$
(M1)

OR
C $=43.0^{\circ}$
(G2) 2
(e) Percentage error $=\frac{43.0-40.9}{40.9} \times 100$

$$
=5.13 \%
$$

(M1)(A1)
(A1) 3

