1) Solutions to this question by accurate drawing will not be accepted.

The diagram shows a quadrilateral $A B C D$ in which A is the point $(1,4)$ and B is the point $(6,5)$. Angle $A B C$ is a right angle and the point C lies on the x-axis. The line $A D$ is parallel to the y-axis and the line $C D$ is parallel to $B A$. Find
(i) the equation of the line $C D$,
(ii) the area of the quadrilateral $A B C D$.
2) The points A and B have coordinates $(-2,15)$ and $(3,5)$ respectively. The perpendicular to the line $A B$ at the point $A(-2,15)$ crosses the y-axis at the point C. Find the area of the triangle $A B C$.
3) The line $y=3 x-9$ intersects the curve $49 x^{2}-y^{2}+42 x+8 y=247$ at the points A and B. Find the length of the line $A B$.
4) Find the coordinates of the points where the line $2 y=x-1$ meets the curve $x^{2}+y^{2}=29$.

The figure shows a right-angled triangle $A B C$, where the point A has coordinates $(-4,2)$, the angle B is 90° and the point C lies on the x-axis. The point $M(1,3)$ is the midpoint of $A B$. Find the area of the triangle $A B C$.
6) The point P lies on the line joining $A(-1,-5)$ and $B(11,13)$ such that $A P=\frac{1}{3} A B$.
(i) Find the equation of the line perpendicular to $A B$ and passing through P.
7) Solutions to this question by accurate drawing will not be accepted.

The diagram shows a trapezium $A B C D$ with vertices $A(11,4), B(7,7), C(-3,2)$ and D. The side $A D$ is parallel to $B C$ and the side $C D$ is perpendicular to $B C$. Find the area of the trapezium $A B C D$.

