1)

10 (i) $m_{A B}=\frac{1}{5}$
Use $m_{1} m_{2}=-1$ in equation for $B C[y-5=-5(x-6)$ or $5 x+y=35]$
$C(7,0)$
Use $m_{C D}=m_{A B}$ and point C in equation of line
$C D: y(-0)=\frac{1}{5}(x-7)$ or $x-5 y=7$
(ii) At $D x=1$

At $D y=-1.2$
Method for area not involving measuring 28.6
2) \quad Grad of $A B=-2$, perp $\operatorname{grad}=\frac{1}{2}$

Eqn of perp $\quad y-15=\frac{1}{2}(x+2)$
$C(0,16)$
Area $=\frac{1}{2} \sqrt{125} \sqrt{5}$
$=12.5$
(or $\frac{1}{2}\left|\begin{array}{cccc}-2 & 3 & 0 & -2 \\ 15 & 5 & 16 & 15\end{array}\right|=\frac{1}{2}(38-13)$)

B1M1

B1 for $\operatorname{grad} A B$
M1 use of $m_{1} m_{2}=-1$
M1 for correct attempt to find the equation of $A C$ and hence to find C

M1 for a valid method to find area
3) Eliminates $y(\operatorname{or} x)$
$x^{2}+3 x-10=0\left(\right.$ or $\left.y^{2}+27 y+72=0\right)$ oe

Factorises 3 term quadratic or solves using formula $x=-5$ and 2 (or $y=-24$ and -3) $y=-24$ and -3 (or $x=-5$ and 2)

Uses Pythagoras

22.1 or $\sqrt{490}$ or $7 \sqrt{10}$
4)
$(2 y+1)^{2}+y^{2}=29$
(or $5 x^{2}-2 x-115=0$)
leading to $5 y^{2}+4 y-28=0$
(or $x^{2}+\left(\frac{x-1}{2}\right)^{2}=29$)
$x=-\frac{23}{5}, y=-\frac{14}{5}$ and
$x=5, y=2$
$(5,2)$ spotted gets B1

M1 for attempt to get an equation in terms of one variable only

DM1 for obtaining a 3 term quadratic equation

DM1 for attempt to solve quadratic equation

A1 for a pair of values
5) $\quad B(6,4)$
$\operatorname{grad} A M=\frac{1}{5} \therefore \operatorname{grad} B C=-5$
$B C$ equation: $y-4=-5(x-6)$

When $y=0, x=6.8$
Area $=20.8$

M1 for attempt at gradient of $B C$

M1 for attempt at straight line equation
A1 for correct equation in any form
Ft on their $B C$ equation
M1 for a correct method for area of triangle
6)

$$
\begin{aligned}
& \text { (i) } \begin{array}{l}
\mathrm{P}(3,1) \\
\text { Grad } A B=\frac{18}{12} \\
\perp \operatorname{grad}-\frac{2}{3} \\
P Q: y-1=-\frac{2}{3}(x-3)
\end{array} \quad(2 x+3 y=9)
\end{aligned}
$$

(ii) $Q(-15,13)$
(iii) Area $=\frac{1}{2} \sqrt{18^{2}+12^{2}} \sqrt{8^{2}+12^{2}}$

$$
\begin{aligned}
\text { or Area } & =\frac{1}{2}\left|\begin{array}{cccc}
3 & 11 & -15 & 3 \\
1 & 13 & 13 & 1
\end{array}\right| \\
\text { or Area } & =\frac{1}{2} \times 26 \times 12 \\
& =156
\end{aligned}
$$

B1, B1	B1 for each coordinate
B1	B1 for gradient of $A B$

$\sqrt{ } \mathbf{B} 1$ for perpendicular gradient
\checkmark B1 on their perp gradient and their point P Must be $y=\ldots$

M1 for use of $y=13$ and their $P Q$ equation.
A1 for both coordinates (can be implied)
M1 for a valid attempt at area $\frac{1}{2} \times P Q \times P B$
Matrix method using their coordinates correctly $\frac{1}{2} \times Q B \times$ vertical perp height
7) $m_{C B}=\frac{1}{2}$
(AD) $y-4=\frac{1}{2}(x-11)$ or $x-2 y=3$

Uses $m_{1} m_{2}=-1$
$(C D) y-2=-2(x+3)$ or $2 x+y=-4$
Solves equation $A D$ with equation $C D$ $D(-1,-2)$

Completely correct method for area 55

B1

M1 A1

A1
M1
A1

M1
A1

