xx1)10 (i)
$$m_{R^0} = \frac{1}{5}$$
xx1)10 (i) $m_{R^0} = \frac{1}{5}$ xx1)Use $m_{R^0} = m_{A^0}$ and point C in equation of $BC [y-5=-5(x-6)$ or $5x + y = 35]$ B1 $C(7,0)$ $\frac{1}{3}(x-7)$ or $x-5y=7$ A1(ii)At $D x = 1$ M1 $At D y = -1.2$ M1Method for area not involving measuring
 28.6 B1 for grad AB(ii)At $D x = 1$ M1 $At D y = -1.2$ M1Method for area not involving measuring
 28.6 B1 for grad ABM1 use of $m_r m_r = -1$ M1 for correct attempt to find the equation
of AC and hence to find C $C(0, 16)$ Area $= \frac{1}{2}\sqrt{125}\sqrt{5}$ $= 12.5$ $(or \frac{1}{2}|_{15} - 5 - 16 - 15| = \frac{1}{2}(38-13))$ 3)Eliminates y (or x)M1 $x^2 + 3x - 10 = 0$ (or $y^2 + 27y + 72 = 0$) oeA1Factorises 3 term quadratic or solves using formula
 $x = -5$ and 2 (or $y = -24$ and -3)
 $y = -24$ and -3 (or $x = -5$ and 2)M1Use S Pythagoras
 2.1 or $\sqrt{490}$ or $7\sqrt{10}$ M14) $(\frac{(2y+1)^2}{y^2+y^2-28-0}$ M1M1M1 for attempt to get an equation in terms
of one variable onlyDM1DM1 for obtaining a 3 term quadratic
equation

(or $x^{2} + \left(\frac{x-1}{2}\right)^{2} = 29$) DM1 $x = -\frac{23}{5}, y = -\frac{14}{5}$ and A1 x = 5, y = 2 A1 (5, 2) spotted gets B1

M1 DM1 for obtaining a 3 term quadratic equation M1 DM1 for attempt to solve quadratic equation A1 A1 for a pair of values A1 [5]

$$B$$
 (6, 4)B1 $\operatorname{grad} AM = \frac{1}{5}$ \therefore $\operatorname{grad} BC = -5$ M1M1 for attempt at gradient of BC BC equation: $y - 4 = -5(x - 6)$ M1M1 for attempt at straight line equation
A1 for correct equation in any formWhen $y = 0, x = 6.8$ $\sqrt{B1}$ Ft on their BC equationArea = 20.8M1,A1M1 for a correct method for area of
triangle

6)

(i)

5)

P (3, 1)
Grad
$$AB = \frac{18}{12}$$

 \perp grad $-\frac{2}{3}$
PQ: $y - 1 = -\frac{2}{3}(x - 3)$ (2x + 3y = 9)
 $\sqrt[3]{B1}$
B1,
B2
 $\sqrt[3]{B1}$
 $\sqrt[3]$

(ii)
$$Q(-15, 13)$$

(iii) Area =
$$\frac{1}{2}\sqrt{18^2 + 12^2} \sqrt{8^2 + 12^2}$$

or Area = $\frac{1}{2}\begin{vmatrix} 3 & 11 & -15 & 3 \\ 1 & 13 & 13 & 1 \end{vmatrix}$
or Area = $\frac{1}{2} \times 26 \times 12$
= 156

7)

(AD)
$$y-4 = \frac{1}{2}(x-11)$$
 or $x-2y=3$

Uses $m_1 m_2 = -1$

 $m_{CB} = \frac{1}{2}$

(*CD*) y-2 = -2(x+3) or 2x + y = -4

Solves equation AD with equation CDD(-1, -2)

Completely correct method for area 55

M1 A1 [9]

B1

M1 A1

M1

A1

M1

A1

31, B1	B1 for each coordinate
B1	B1 for gradient of <i>AB</i>
√B 1	$\sqrt{B1}$ for perpendicular gradient
√B1	√B1 on their perp gradient and their point <i>P</i> Must be $y =$
M1 A1	M1 for use of $y = 13$ and their PQ equation. A1 for both coordinates (can be implied)
M1	M1 for a valid attempt at area $\frac{1}{2} \times PQ \times PB$
	Matrix method using their coordinates correctly
	$\frac{1}{2} \times QB \times \text{vertical perp height}$
A1 [9]	