

A, *B* and *C* are points on a circle, centre *O*. *TA* is a tangent to the circle at *A* and *OBT* is a straight line. *AC* is a diameter and angle $OTA = 24^\circ$.

Calculate

(a) angle AOT,

Answer(a) Angle AOT = [2]

(b) angle *BOC*,

Answer(b) Angle BOC = [1]

(c) angle *OCB*.

Answer(c) Angle OCB =[1]

A straight line intersects two parallel lines as shown in the diagram. Find the value of x.

Answer x = [1]

3)

(a)

Points A, B and C lie on the circumference of the circle shown above.

When angle BAC is 90° write down a statement about the line BC.

Answer(a)

2)

O is the centre of a circle and the line *ABC* is a tangent to the circle at *B*. *D* is a point on the circumference and angle $BOD = 54^{\circ}$.

Calculate angle DBC.

Answer(b) Angle DBC = [3]

(a)

The diagram shows a triangle *ABC* with *BA* extended to *D*. AB = AC and angle $CAD = 140^{\circ}$. Find the value of *p*.

$$Answer(a) p = [2]$$

Find the value of *x*.

(d)

In triangle *ABC*, angle $A = 90^{\circ}$ and angle $B = 22^{\circ}$.

Calculate angle C.

Answer(d) Angle C = [1]

(a) The table below shows how many sides different polygons have.

Complete the table.

Name of polygon	Number of sides
	3
Quadrilateral	4
	5
Hexagon	6
Heptagon	7
	8
Nonagon	9

(b) Two sides, AB and BC, of a regular nonagon are shown in the diagram below.

(i) Work out the value of *x*, the exterior angle.

$$Answer(b)(i) x =$$
[2]

(ii) Find the value of angle *ABC*, the interior angle of a regular nonagon.

$$Answer(b)(ii) \text{ Angle } ABC =$$
[1]

[3]


```
Answer x = [1]
```


The diagram shows part of a regular polygon with each interior angle 150°.

Calculate the number of sides of the polygon.

Answer [3]

NOT TO SCALE

9)

8)

P, *Q* and *R* lie on a circle, centre *O*. *PR* is a diameter and angle $OQR = 55^{\circ}$.

Find

(a) angle *PQR*,

Answer(a) Angle PQR = [1]

(b) angle *ROQ*,

Answer(b) Angle ROQ = [1]

(c) angle *OPQ*.

A, *B* and *C* lie on a circle, centre *O*. *BC* is a diameter and *SCT* is a tangent at *C*. Angle $ACB = 54^{\circ}$. Find

(a) angle *BCT*,

		Answer(a) Angle BCT =	 [1]
(b)	angle COA,		
		Answer(b) Angle COA =	 [1]
(c)	angle <i>CAB</i> ,		
		Answer(c) Angle CAB =	 [1]
(d)	angle ABC.		
		Answer(d) Angle ABC =	 [1]

A

The diagram shows a quadrilateral *ABCD* with *DC* parallel to *AB*.

(a) Write down the geometrical name for a quadrilateral with **only one** pair of parallel sides.

	Answer(a)		[1]
-	th line and $DC = AC$. 2° and angle $ACB = 67^{\circ}$.		
Find the values	of p , t and w , giving a reason for each as	nswer.	
Answer (b) p =	because		
			[2]
t =	because		
			[2]
w =	because		
<i>w</i> –			[2]

11)

(b)

The diagram shows a circle, centre *O*, with diameter *BC*. *AB* is a tangent to the circle at *B* and angle $BCD = 55^{\circ}$. A straight line from *A* meets the circle at *D* and *C*.

Calculate the value of

(a) *x*,

Answer(a) x =[2]

(b) *y*.

13)

Answer(b) y =[1]

In the diagram, TAU is a tangent to the circle at A. AB is a diameter of the circle and AC = BC.

Find

(a) angle *BCA*,

(b) angle *ABC*,

Answer(b) Angle ABC =[1]

[1]

Answer(a) Angle BCA =

(c) angle CAU.

Answer(c) Angle CAU = [1]

14)

Answer(c)(ii) Angle PSR = [1]

15)