

[^0]10 [10]

$$
\begin{aligned}
\text { (i) } \mathrm{m}_{B C}=3 / 5 & \text { Equation of } A D \text { is } y-4=3 / 5(x+2) \\
\mathrm{m}_{A C}=-1 / 4 & \text { Equation of } C D \text { is } y-2=4(x-6)
\end{aligned}
$$

B1 M1 A1
B1 M1 A1
(ii) Solve $\quad x=8, y=10$

M1 A1
(iii) Length of $A C=$ Length of $C D=\sqrt{68}$

Nov 04 P2 Q9

Nov 04 P2 Q 11

\begin{tabular}{|c|c|c|c|}
\hline 11 [10] \& \begin{tabular}{l}
 \\
Let \(A\) be \((x, y)\) i.e. \((x, 3 x)\) \\
Length of \(O A=\sqrt{x^{2}+9 x^{2}}=\sqrt{250} \Rightarrow x=5, A\) is \((5,15)\) \\
\(\left(\sqrt{x^{2}+y^{2}}=\sqrt{250}\right.\) enough for M1) \\
Gradient of \(A B\) is \(-\frac{1}{3}\) \\
Equation of \(A B\) is \(y-15=-\frac{1}{3}(x-5) \Rightarrow B\) is \((0,162 / 3)\) \\
AND substitute \(x=0\) for M1 \\
Decimals 16.6 or \(16.7,-1\) p.a. \\
Gradient of \(B C\) is 3 \\
Equation of \(B C\) is \(y=3 x+16 \frac{2}{3}\) \\
Meets \(y+2 x=0\) when \(-2 x=3 x+16 \frac{2}{3} \Rightarrow x=-3 \frac{1}{3}\), \\
\(C\) is \(\left(-3 \frac{1}{3}, 6 \frac{2}{3}\right)\) but accept (\(-3.32,6.64\)), (\(-3.34,6.68\)) \\
In essence, scheme is 3 marks for each of \(A, B, C\). Possible to find \(B\) before \(A\) e.g.
\[
A O Q X=\tan ^{-1} 3=71.565^{\circ} \mathrm{B} 1 \quad O B=\sqrt{250} / \sin 71.565^{\circ} \quad \mathrm{M} 1 \Rightarrow 16 \frac{2}{3} \mathrm{~A} 1
\] \\
Gradient of \(A B\) is \(-\frac{1}{3}\) B1 Solve \(y-16 \frac{2}{3}=-\frac{1}{3} x\) with \(y=3 x\) M1 \(\Rightarrow\) \((5,15)\) A1
\end{tabular} \& B1
M1
B1
M1
B1
B1
M1
M1
A1 \& A1

A1

\hline
\end{tabular}

8				
$\lg x$	1	2	3	4
$\lg y$	3.28	2.40	1.49	0.60

(i) Knows what to do. Pts within $1 / 2$ square.
(ii) Gradient $= \pm n \quad n=-0.88$ to -0.92 $\log k=y$-intercept $\quad k=14000$ to 16000

For part (ii) - use of sim eqns is ok if points used are on line, not from table.

M1 A2,1 Knows what to do.
[3] Accuracy within $1 / 2$ square.
B1 A1
B1 A1
B1 even if just stated without graph. B1 even if just stated without graph.

June 05 P2 Q12 E

12
$D C=B D[$ or $D(5,6)$ midpoint of $C(x, y), B(8,8)] \Rightarrow C$ is $(2,4)$
M1 A1
E

$$
\mathrm{m}_{D E}=\mathrm{m}_{A C}=7 / 4 \quad \mathrm{~m}_{C E}=-1 / \mathrm{m}_{A C}=-4 / 7
$$

Equation of $D E$ is $y-6=7 / 4(x-5)$

Equation of $C E$ is $y-4=-4 / 7(x-2)$
M1 (either)
A1 $\sqrt{ }$
M1 A1

Complete method for entire area $\rightarrow 15.6$
M1 A1 [11]

10. (i) Pythagoras \rightarrow $A B=\sqrt{ } 40 . B C=\sqrt{ } 40$	M1 A1 [2]	Or by vectors
$\text { (ii) } \begin{array}{rl} m \text { of } A C=1 / 2 . \\ m \text { of } B D & =-2 \\ \text { eqn } B D ~ & y+2 x=20 \\ \rightarrow D(10,0) \end{array}$ or $M(4,12) \rightarrow m=-2$	B1 M1 M1 A1 [4]	Anywhere Use of $m_{1} m_{2}=-1$ Not necessary to have eqn since $y=0$ may be used. Finds $M \rightarrow m$ of -2 equivalent to B1M1.
$\begin{aligned} & B M: M D \\ & =\sqrt{ } 20: \sqrt{ } 180=1: 3 \end{aligned}$ (or finds each area by "matrix" or $1 / 2 b h$)	M1 M1 Al	Realises that only heights are needed. Pythagoras - any form ok for A mark. M1 $A B C(40)$ M1 $A C D(120)$ A1 1:3.

Nov 05 P1 Q 12E

[^0]: June 04 P2 Q 10

