Bivariate stats 1 Answers

1)

(ii) (a) $y=81.0 x+1370$
(G1)(G1) [2 marks]
(b) Let the least number sold to make a profit be a.

Then income $=120 a$
Production costs $=81.0 a+1370$
Thus $120 a>81 a+1370$

$$
\begin{align*}
& a>\frac{1370}{120-81} \\
& a>35.1 \tag{A1}
\end{align*}
$$

Hence, to make a profit, the factory must produce at least 36 chairs each week.
2)
(ii) (a) $y=9.76 x+166$
(A3)
(b) (i) unit cost (or cost of producing one box)
(R1)
(ii) fixed costs

Note: Award (RO)(R0) for strictly geometric interpretations.
3)
(iii) (a) (i) minimum value $=-1$; maximum value $=1$
(A1)(A1)
(ii) y 个
(A1)
(iii) linear, strong positive
(A2)
(b) (i) regression line passes through (\bar{x}, \bar{y})
(M1)
gradient of regression line $=\frac{49.2-46}{660-500}=0.02$
equation of regression line: $\frac{y-46}{x-500}=0.02(\Rightarrow y=0.02 x+36) \quad(\boldsymbol{A 1})$
4)
(i) (a) $y-\bar{y}=\frac{s_{x y}}{s_{x}^{2}}(x-\bar{x})$
(M1)
$y-60=\frac{36}{3^{2}}(x-10)$
(A1)(A1)
$\Rightarrow y=4 x+20$
(A1)
(M1)
(b) (i) $x=20 \Rightarrow y=4 \times 20+20$ (A1)
(ii) (a) $r=\frac{s_{x y}}{s_{x} s_{y}}=\frac{36}{3(15)}$

$$
=0.8
$$

(b) The value of r indicates fairly good, (or equivalent) (R1)
but
not exceptionally (moderately, fairly) strong
linear correlation. Thus, $x=20$
does not guarantee $y=100$ (is not reliable)
(A1) (Use discretion for equivalent meanings.)
5)
(i)
(a) E
(b) C
(c) F
(d) A
(e) D
(A1)
(A1)
(A1)
(A1)
(A1)
(
(N2) [4 marks]
(M1)
(A1)
(N1)
(N1)
(N1)
(N1)
(N1)
[5 marks]

