1)

(ii) A furniture manufacturer makes chairs to sell to shops.

Over a six-week period, the cost y of producing x chairs is given in the following table.

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6
Number of chairs <i>x</i>	22	40	32	28	46	44
Production cost \$y	3 2 0 0	4600	3 800	3 700	5 100	5 000

(a) Find the equation of the regression line of y on x for this data.

[2 marks]

(b) The chairs are sold at \$120 each. Find the least number of chairs which the factory must sell each week in order to make a profit.

[5 marks]

2) (ii) Each day, a factory recorded the number (x) of boxes it produces and the total production cost (y) dollars. The results for nine days are shown in the following table.

x	28	45	60	48	51	33	67	40	56
у	460	580	770	600	640	490	830	570	730

(a) Write down the equation of the least squares regression line of y on x.

[3 marks]

- (b) In this situation, interpret the meaning of
 - (i) the gradient;
 - (ii) the *y*-intercept.

[2 marks]

Bivariate stats 1

- (iii) Fifteen books are selected at random from all the books in a bookstore. For each book, the number of pages (x) and the selling price (y) are determined.
 - (a) The correlation coefficient r is calculated.
 - (i) Write down the possible minimum and maximum values of r. It is found that r = 0.95.
 - (ii) Sketch a possible scatter diagram to represent this information.
 - (iii) Which **two** of the following expressions describe the correlation between *x* and *y*?
 - perfect, zero, linear, strong positive, strong negative, weak positive, weak negative.

[5 marks]

- (b) For the fifteen books in the sample, the mean number of pages $\overline{x} = 500$ and the mean price $\overline{y} = 46$. Using the equation of the regression line of y on x, it was estimated that a book with 660 pages would sell for \$49.20.
 - (i) Find the equation of the regression line.
 - (ii) Hence, estimate the selling price of a 550 page book.

[4 marks]

Bivariate stats 1

4) (i) The number of hours a student spends studying for a particular examination is x. The score out of 100 the student receives is y. Pairs of (x, y) values are recorded for a class of students and the relationship between x and y is investigated. The results may be summarized in the following table.

	x	у
Mean	10	60
Standard deviation	3	15

The covariance of *x* and *y* is equal to 36.

(a) Find the equation of the least squares regression line of y on x, expressing your answer in the form y = mx + c.

[4 marks]

- (b) (i) Use your answer to part (a) to predict how many marks a student who studies for 20 hours would achieve.
 - (ii) A teacher wishes to explain to students why they cannot guarantee a score of 100 by studying for the hours calculated in part (b) (i). In order to do so, the value of the product-moment correlation coefficient, r, is to be used.
 - (a) Calculate r for the given data.
 - (b) Based on the value of *r* obtained, how reliable is the prediction of part (b) (i)?

[7 marks]

5) (i) The following scatter diagrams represent six sets of data. The line y = x is shown on each diagram.

The least squares regression line y = ax + b is calculated for each set of data. The coefficient of linear correlation, r, is also calculated in each case. The values of a are -1, -0.5, 1 or 1.5. The values of r are ± 0.8 , ± 0.95 or ± 1 .

Write down the letter of the diagram corresponding to the following results.

(a)
$$a = -1, r = -1;$$
 [1 mark]

(b)
$$a = 1.5, r = 0.95;$$
 [1 mark]

(c)
$$a = -0.5, r = -0.95$$
; [1 mark]

(d)
$$a = 1.5, r = 0.8;$$
 [1 mark]

(e)
$$a = -0.5, r = -0.8$$
. [1 mark]