Algebra Binomial P2 MS

0 min
0 marks

1. (a) 12 terms
(b) evidence of binomial expansion
e.g. $\binom{n}{r} a^{n-r} b^{r}$, an attempt to expand, Pascal's triangle evidence of choosing correct term
e.g. 10th term, $r=9,\binom{11}{9}(x)^{2}(2)^{9}$
correct working
A1
e.g. $\binom{11}{9}(x)^{2}(2)^{9}, 55 \times 2^{9}$
$28160 x^{2}$
A1 N2 4
2. evidence of substituting into binomial expansion
(M1)
e.g. $a^{5}+\binom{5}{1} a^{4} b+\binom{5}{2} a^{3} b^{2}+\ldots$
identifying correct term for x^{4}
evidence of calculating the factors, in any order
e.g. $\binom{5}{2}, 27 x^{6}, \frac{4}{x^{2}} ; 10\left(3 x^{2}\right)^{3}\left(\frac{-2}{x}\right)^{2}$

Note: Award Al for each correct factor.
term $=1080 x^{4}$
A1 N 2
[6]
3. (a) attempt to expand

$$
(x+h)^{3}=x^{3}+3 x^{2} h+3 x h^{2}+h^{3}
$$

(b) evidence of substituting $\mathrm{x}+h$
correct substitution
e.g. $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{(x+h)^{3}-4(x+h)+1-\left(x^{3}-4 x+1\right)}{h}$
simplifying
e.g. $\frac{\left(x^{3}+3 x^{2} h+3 x h^{2}+h^{2}-4 x-4 h+1-x^{3}+4 x-1\right)}{h}$
factoring out h
A1 N2
e.g. $\frac{h\left(3 x^{2}+3 x h+h^{2}-4\right)}{h}$
$f^{\prime}(x)=3 x^{2}-4$
AG N0
(c) $f(1)=-1$
setting up an appropriate equation
e.g. $3 x^{2}-4=-1$
at $\mathrm{Q}, x=-1, y=4(\mathrm{Q}$ is $(-1,4))$
(d) recognizing that f is decreasing when $f^{\prime}(x)<0$
e.g. $p=-1.15, q=1.15 ; \pm \frac{2}{\sqrt{3}} ;$ an interval such as $-1.15 \leq x \leq 1.15$
4. evidence of using binomial expansion
e.g. selecting correct term, $a^{8} b^{0}+\binom{8}{1} a^{7} b+\binom{8}{2} a^{6} b^{2}+\ldots$
evidence of calculating the factors, in any order
e.g. $56, \frac{2^{3}}{3^{3}},-3^{5},\binom{8}{5}\left(\frac{2}{3} x\right)^{3}(-3)^{5}$
$-4032 x^{3}\left(\right.$ accept $=-4030 x^{3}$ to 3 s.f. $)$
A1 N 2
[5]
5. (a) evidence of expanding
e.g. $(x-2)^{4}=x^{4}+4 x^{3}(-2)+6 x^{2}(-2)^{2}+4 x(-2)^{3}+(-2)^{4}$
$(x-2)^{4}=x^{4}-8 x^{3}+24 x^{2}-32 x+16$
A2 N 2
(b) finding coefficients, $3 \times 24(=72), 4 \times(-8)(=-32)$ term is $40 x^{3}$
(A1)(A1)
A1 N3

