Binomial 1

1) Obtain
(i) the expansion, in ascending powers of x, of $\left(2-x^{2}\right)^{5}$,
(ii) the coefficient of x^{6} in the expansion of $\left(1+x^{2}\right)^{2}\left(2-x^{2}\right)^{5}$.
2) (i) Find the first 3 terms in the expansion, in ascending powers of x, of $(2-x)^{5}$.
(ii) Hence find the value of the constant k for which the coefficient of x in the expansion of $(k+x)(2-x)^{5}$ is -8 .
3) (a) Calculate the term independent of x in the binomial expansion of $\left(x-\frac{1}{2 x^{5}}\right)^{18}$.
(b) In the binomial expansion of $(1+k x)^{n}$, where $n \geqslant 3$ and k is a constant, the coefficients of x^{2} and x^{3} are equal. Express k in terms of n.
4) (a) (i) Expand $(2+x)^{5}$.
(ii) Use your answer to part (i) to find the integers a and b for which $(2+\sqrt{3})^{5}$ can be expressed in the form $a+b \sqrt{3}$.
(b) Find the coefficient of x in the expansion of $\left(x-\frac{4}{x}\right)^{7}$.
5) (i) In the binomial expansion of $\left(x+\frac{k}{x^{3}}\right)^{8}$, where k is a positive constant, the term independent of x
is 252 .

Evaluate k.
(ii) Using your value of k, find the coefficient of x^{4} in the expansion of $\left(1-\frac{x^{4}}{4}\right)\left(x+\frac{k}{x^{3}}\right)^{8}$.
6) (i) Find the first three terms, in ascending powers of u, in the expansion of $(2+u)^{5}$.
(ii) By replacing u with $2 x-5 x^{2}$, find the coefficient of x^{2} in the expansion of $\left(2+2 x-5 x^{2}\right)^{5}$.
7) Find the coefficient of x^{3} in the expansion of
(i) $(1+3 x)^{8}$,
(ii) $(1-4 x)(1+3 x)^{8}$.
8) Find the coefficient of x^{4} in the expansion of
(i) $(1+2 x)^{6}$,
(ii) $\left(1-\frac{x}{4}\right)(1+2 x)^{6}$.

