Binomial 1

1) Obtain

- (i) the expansion, in ascending powers of x, of $(2 x^2)^5$,
- (ii) the coefficient of x^6 in the expansion of $(1 + x^2)^2(2 x^2)^5$.

[6]

[3]

[4]

- 2) (i) Find the first 3 terms in the expansion, in ascending powers of x, of $(2-x)^5$. [3]
 - (ii) Hence find the value of the constant k for which the coefficient of x in the expansion of $(k+x)(2-x)^5$ is -8. [2]

3) (a) Calculate the term independent of x in the binomial expansion of $\left(x - \frac{1}{2x^5}\right)^{18}$. [3]

(b) In the binomial expansion of $(1 + kx)^n$, where $n \ge 3$ and k is a constant, the coefficients of x^2 and x^3 are equal. Express k in terms of n. [4]

4) (a) (i) Expand
$$(2 + x)^5$$
.

(ii) Use your answer to part (i) to find the integers *a* and *b* for which $(2 + \sqrt{3})^5$ can be expressed in the form $a + b\sqrt{3}$. [3]

(**b**) Find the coefficient of x in the expansion of $\left(x - \frac{4}{x}\right)^7$. [3]

5) (i) In the binomial expansion of $\left(x + \frac{k}{x^3}\right)^8$, where k is a positive constant, the term independent of x is 252.

Evaluate k.

(ii) Using your value of k, find the coefficient of x^4 in the expansion of $\left(1 - \frac{x^4}{4}\right)\left(x + \frac{k}{x^3}\right)^8$. [3]

6) (i) Find the first three terms, in ascending powers of u, in the expansion of $(2 + u)^5$. [2]

(ii) By replacing *u* with $2x - 5x^2$, find the coefficient of x^2 in the expansion of $(2 + 2x - 5x^2)^5$.

- 7) Find the coefficient of x^3 in the expansion of
 - (i) $(1+3x)^8$, [2]
 - (ii) $(1-4x)(1+3x)^8$. [3]
- 8) Find the coefficient of x^4 in the expansion of

(i)
$$(1+2x)^6$$
, [2]

(ii)
$$\left(1-\frac{x}{4}\right)(1+2x)^6$$
. [3]