Binomial 2

- 1) (i) Find the first 3 terms of the expansion, in ascending powers of x, of $(1 + 3x)^6$. [2]
 - (ii) Hence find the coefficient of x^2 in the expansion of $(1 + 3x)^6 (1 3x 5x^2)$. [3]

2) (a) (i) Write down the first 4 terms, in ascending powers of x, of the expansion of $(1 - 3x)^7$. [3]

- (ii) Find the coefficient of x^3 in the expansion of $(5 + 2x)(1 3x)^7$. [2]
- (**b**) Find the term which is independent of x in the expansion of $\left(x^2 + \frac{2}{x}\right)^9$. [3]
- 3) Given that the expansion of $(a + x)(1 2x)^n$ in ascending powers of x is $3 41x + bx^2 + ...,$ find the values of the constants a, n and b. [6]
- 4) The binomial expansion of $(1 + px)^n$, where n > 0, in ascending powers of x is

$$1 - 12x + 28p^2x^2 + qx^3 + \dots$$

Find the value of n, of p and of q.

- 5) Given that the coefficient of x^2 in the expansion of $(k + x)\left(2 \frac{x}{2}\right)^6$ is 84, find the value of the constant k. [6]
- 6) (i) Expand $(1+x)^5$. [1]
 - (ii) Hence express $(1+\sqrt{2})^5$ in the form $a+b\sqrt{2}$, where a and b are integers. [3]
 - (iii) Obtain the corresponding result for $(1 \sqrt{2})^5$ and hence evaluate $(1 + \sqrt{2})^5 + (1 \sqrt{2})^5$. [2]

7) (i) Find, in ascending powers of x, the first 3 terms in the expansion of $(2-3x)^5$. [3] The first 3 terms in the expansion of $(a + bx)(2 - 3x)^5$ in ascending powers of x are $64 - 192x + cx^2$.

(ii) Find the value of a, of b and of c. [5]

8) (i) Find the first four terms, in ascending powers of x, in the expansion of $\left(2 - \frac{x}{2}\right)^6$. [4]

(ii) Find the coefficient of x^3 in the expansion of $(1+x)^2 \left(2 - \frac{x}{2}\right)^6$. [2]

[6]