Binomial 2

1) (i) Find the first 3 terms of the expansion, in ascending powers of x, of $(1+3 x)^{6}$.
(ii) Hence find the coefficient of x^{2} in the expansion of $(1+3 x)^{6}\left(1-3 x-5 x^{2}\right)$.
2) (a) (i) Write down the first 4 terms, in ascending powers of x, of the expansion of $(1-3 x)^{7}$.
(ii) Find the coefficient of x^{3} in the expansion of $(5+2 x)(1-3 x)^{7}$.
(b) Find the term which is independent of x in the expansion of $\left(x^{2}+\frac{2}{x}\right)^{9}$.
3) Given that the expansion of $(a+x)(1-2 x)^{n}$ in ascending powers of x is $3-41 x+b x^{2}+\ldots$, find the values of the constants a, n and b.
4) The binomial expansion of $(1+p x)^{n}$, where $n>0$, in ascending powers of x is

$$
1-12 x+28 p^{2} x^{2}+q x^{3}+\ldots
$$

Find the value of n, of p and of q.
5) Given that the coefficient of x^{2} in the expansion of $(k+x)\left(2-\frac{x}{2}\right)^{6}$ is 84 , find the value of the
constant k.
6) (i) Expand $(1+x)^{5}$.
(ii) Hence express $(1+\sqrt{2})^{5}$ in the form $a+b \sqrt{2}$, where a and b are integers.
(iii) Obtain the corresponding result for $(1-\sqrt{2})^{5}$ and hence evaluate $(1+\sqrt{2})^{5}+(1-\sqrt{2})^{5}$.
7) (i) Find, in ascending powers of x, the first 3 terms in the expansion of $(2-3 x)^{5}$.

The first 3 terms in the expansion of $(a+b x)(2-3 x)^{5}$ in ascending powers of x are $64-192 x+c x^{2}$.
(ii) Find the value of a, of b and of c.
8) (i) Find the first four terms, in ascending powers of x, in the expansion of $\left(2-\frac{x}{2}\right)^{6}$.
(ii) Find the coefficient of x^{3} in the expansion of $(1+x)^{2}\left(2-\frac{x}{2}\right)^{6}$.

