1)	7.(i) $(2-x^2)^5 = 2^5 + 5 \times 2^4(-x^2) + 10 \times 2^3 \times (-x^2)^2$ etc Powers of 2 and $(\pm x^2)$ more or less correct. Binomial coefficients used correctly. $\rightarrow 32 - 80x^2 + 80x^4 - 40x^6 + 10x^8 - x^{10}$	MI MI Al	Correct use of powers – even if no (–)s. Correct use of binomial coeffs. All correct.
	(ii) $(1 + x^2)^2 = 1 + 2x^2 + x^4$ Attempt to multiply and pick out 3 terms $\rightarrow (-40 + 160 - 80) x^6 \Rightarrow 40$	B1 M1 A1 6	Independent of anything else. Reasonable attempt with 3 terms. Correct only.

2)

3.	(i) $32 - 80x + 80x^2$	B1 x 3	Allow 2 ⁵ for 32 (if whole series is given, mark the 3 terms).
	(ii) $(k + x) \times (i)$ Coeff. of x is -80k + 32 Equated with -8 \rightarrow k = ½ or 0.5	M1 A1√ [5]	Must be 2 terms considered. For solution of $k = (-8 - a) \div (b)$

3)

9. (a) $\left(x - \frac{1}{2x^5}\right)^{18}$	B1		For $_{18}C_3$ or $_{18}C_{15}$
$ \stackrel{_{18}C_{15}}{\to} (x)^{15} (1/2x^5)^3 $ $ \stackrel{_{18}C_{15}}{\to} 18.17.16(-\frac{1}{8}) \div 6 $	B1		For $(\pm \frac{1}{2})^3$ – even if in $(1/2x)^3$
→ - 102	B1	[3]	Co
(b) $(1 + kx)^n$ Coeff of $x^2 = {}_nC_2k^2$	B1		Co.
Coeff of $x^3 = {}_nC_3k^3$	B1		Co.
Equating and changing to factorials \rightarrow k = 3/(n-2) or equivalent without factorials	M1 A1	[4]	Needs attempt at nCr Co

4)	11 (a)	(i)	$32 + 80x + 80x^{2} + 40x^{3} + 10x^{4} + x^{5}$ All coefficients to be resolved	B3, 2, 1	
		(ii)	$x = \sqrt{3} \implies x^3 = 3\sqrt{3}, x^5 = 9\sqrt{3}$	B1 B1	
			$32 + 80\sqrt{3} + 240 + 120\sqrt{3} + 90 + 9\sqrt{3} = 362 + 209\sqrt{3}$	B1	
	(b)	+ x	$(-4/x)^3$ × $_7C_4$ (or $_7C_3$) = 35 = -2240	M1 A1 A1	<u>ר</u> נ

[9]

5)								
	8 {7]	(i) ${}^{8}C_{r}x^{r}(k/x^{3})^{8-r}$	⇒	$r+3\left(8-r\right)=0$	⇒	r = 6	M 1	A1
		${}^{8}C_{6}k^{2} = 252$	⇒	$k^2 = 9$	⇒	k = 3	M1	A1
		(ii) $(x + 3 / x^3)^8$	⇒	$+8x^{7}(3/x^{3})$)+			B 1
		$(1 - x^4/4)(x^8 + 24)$	lx ⁴ + 252	$(+\ldots) \Rightarrow Coefficients$	nt of x	* = 24 - 63 = -39	M1	A 1√

6)	4. (i) $(2+u)^5 = 32 + 80u + 80u^2$	B2,1,0 [2]	One lost for each error
	(ii) Replaces <i>u</i> by $2x - 5x^2$ -400 from 'u' term or +320 from 'u ² ' term Also +80 $(2x - 5x^2)^2$ $\rightarrow -400 + 320 = -80$	M1 B1 M1 A1√ [4]	Recognises and uses the link. Co (may be implied by answer) Needs to look at 2 terms for x^2 From his original expansion.

7)	(i)	evidence of 27 or 56 in correct place 1512	B1 B1
	(ii)	28 x 9 complete plan 504	B1 M1 A1
8)	(i)	15 or 2 ⁴ 240	B1 B1
	(ii)	160	B1
		$(240) + \left(-\frac{1}{4}\right) \times (160)$	M1
		200	A1

[5]

5