1)

7.(i) $\begin{aligned} & \left(2-x^{2}\right)^{5}=2^{5}+5 \times 2^{4}\left(-x^{2}\right)+10 \times 2^{3} \times\left(-x^{2}\right)^{2} \text { etc } \\ & \text { Powers of } 2 \text { and }\left(\pm x^{2}\right) \text { more or less correct. }\end{aligned}$ Binomial coefficients used correctly.
$\rightarrow \quad 32-80 x^{2}+80 x^{4}-40 x^{6}+10 x^{8}-x^{10}$
(ii) $\left(1+x^{2}\right)^{2}=1+2 x^{2}+x^{4}$ Attempt to multiply and pick out 3 terms $\rightarrow(-40+160-80) x^{6} \Rightarrow 40$

Comect use of powers - even if no (-)s. Correct use of binomial coeffs. All correct.

Independent of anything else. Reasonable attempt with 3 terms. Correct only.
2)

3. (i) $32-80 x+80 x^{2}$	B1 x 3	Allow 2^{5} for 32 (if whole series is given, mark the 3 terms).
(ii) $(k+x) \times(i)$ Coeff. of x is $-80 k+32$ Equated with $-8 \rightarrow k=1 / 2$ or 0.5	M1	Must be 2 terms considered.
	$[5]$	For solution of $k=(-8-a) \div(b)$

3)

9. (a) $\begin{aligned} & \left(x-\frac{1}{2 x^{5}}\right)^{18} \\ & { }_{18} \mathrm{C}_{15}(\mathrm{x})^{15}\left(1 / 2 x^{5}\right)^{3} \\ & \rightarrow 18.17 .16(-1 / 8) \div 6 \\ & \rightarrow-102 \end{aligned}$ (b) $(1+k x)^{n}$ Coeff of $x^{2}={ }_{n} \mathrm{C}_{2} \mathrm{k}^{2}$ Coeff of $x^{3}={ }_{n} \mathrm{C}_{3} \mathrm{k}^{3}$ Equating and changing to factorials $\rightarrow \mathrm{k}=3 /(\mathrm{n}-2)$ or equivalent without factorials	B1 B1 B1 [3] B1 B1 M1 A1 [4]	For ${ }_{18} \mathrm{C}_{3}$ or ${ }_{18} \mathrm{C}_{15}$ For $(\pm 1 / 2)^{3}$ - even if in $(1 / 2 x)^{3}$ Co Co. Co. Needs attempt at nCr Co

4)

11 (a)
(i) $32+80 x+80 x^{2}+40 x^{3}+10 x^{4}+x^{5}$

B3, 2, 1
All coefficients to be resolved
(ii) $\quad x=\sqrt{ } 3 \quad \Rightarrow \quad x^{3}=3 \sqrt{ } 3, \quad x^{5}=9 \sqrt{ } 3$

B1 B1

$$
32+80 \sqrt{ } 3+240+120 \sqrt{ } 3+90+9 \sqrt{ } 3=362+209 \sqrt{ } 3
$$

(b) $\quad \ldots+x^{4}(-4 / x)^{3} \ldots \quad \times{ }_{7} \mathrm{C}_{4}\left(\right.$ or $\left.{ }_{7} \mathrm{C}_{3}\right)=35=-2240$

Binomial 1 Answers

5)

8 [7]
(i) $\begin{array}{cccc}{ }^{8} \mathrm{C}_{r} x^{r}\left(k / x^{3}\right)^{8-r} & \Rightarrow & r-3(8-r)=0 & \Rightarrow \quad r=6 \\ { }^{8} \mathrm{C}_{0} k^{2}=252 & \Rightarrow & k^{2}=9 & \Rightarrow \quad k=3\end{array}$

M1 A1
${ }^{8} C_{6} k^{2}=252 \quad \Rightarrow \quad k^{2}=9 \quad \Rightarrow \quad k=3$
(ii) $\left(x+3 / x^{3}\right)^{8} \quad \Rightarrow \quad \ldots+8 x^{7}\left(3 / x^{3}\right)+\ldots$

6)
4. (i) $(2+u)^{5}=32+80 u+80 u^{2}$
(ii) Replaces u by $2 x-5 x^{2}$
-400 from ' u ' term or +320 from ' u ', term
Also $\ldots+80\left(2 x-5 x^{2}\right)^{2}$
$\rightarrow-400+320=-80$

B2,1,0

M1
B1
M1
A1 $\sqrt{ }$

One lost for each error

Recognises and uses the link.
Co (may be implied by answer)
Needs to look at 2 terms for x^{2}
From his original expansion.
(i) evidence of 27 or 56 in correct place
(ii) 28×9
complete plan
8)
(i) 15 or $2^{4} \quad$ B1

240
B1
(ii) 160

B1
$(240)+\left(-\frac{1}{4}\right) \times(160)$
200

