
Basic Probability Ans

0 min 0 marks

1. (a)

(A1)(A1)(A1) (C3)

Note: Award (A1) for a labeled Venn diagram with appropriate

(A1) for 7, (A1) for 8 and 5.

(b) P (Spanish / one language only) =
$$\frac{\frac{8}{20}}{\frac{8}{20} + \frac{5}{20}}$$
 (M1)(A1)(ft)

Note: Award (M1) for substituted conditional probability formula, (A1) for correct substitution. Follow through from their Venn diagram.

$$=\frac{8}{13} (0.615, 61.5\%)$$
 (A1)(ft)

OR

P (Spanish / one language only) =
$$\frac{8}{8+5}$$
 (A1)(ft)(M1)

Note: Award (A1) for their correct numerator, (M1) for correct recognition of regions.

Follow through from their Venn diagram.

$$= \frac{8}{13} (0.615, 61.5\%)$$
 (A1)(ft) (C3)

[6]

2.

Note: In the Spanish papers B is used instead of G and P is used instead of W.

(a)

(A4) (C4)

(b)
$$P(G \cap W) = \frac{3}{4} \times \frac{17}{20}$$
 (A1)

$$P(NG \cap W) = \frac{1}{4} \times \frac{1}{5} \tag{A1}$$

$$P(W) = \frac{3}{4} \times \frac{17}{20} + \frac{1}{4} \times \frac{1}{5} \tag{M1}$$

$$= \frac{11}{16} (0.6875, 68.75\% \text{ or } 0.688 \text{ to } 3 \text{ s.f.})$$
 (A1) (C4)

[8]

3. (a) (i) P(chocolate, chocolate) =
$$\frac{3}{10} \times \frac{3}{10} = \frac{9}{100} = (0.09)$$
 (M1)(A1) 2

(ii)
$$P(\text{one is plain}) = P(\text{chocolate, plain}) + P(\text{plain, chocolate})$$
 (M1)

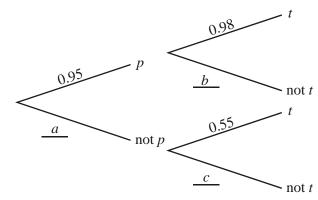
$$= \left(\frac{3}{10} \times \frac{7}{10}\right) + \left(\frac{7}{10} \times \frac{3}{10}\right) = \frac{42}{100} = (0.42) \tag{M1)(A1)}$$

(b) (i)
$$a = 8, b = 9$$
 (A1)(A1) 2

(ii)
$$P(\text{chocolate}, \text{chocolate}) = 0$$
 (A1) 1

(iii)
$$P(\text{at least one chocolate}) = P(\text{one is chocolate})$$
 (M1)

$$= \left(\frac{9\times1}{10\times9}\right) + \left(\frac{1\times9}{10\times9}\right) = \frac{18}{90} = 0.2 \tag{M1)(A1)}$$


(c) P(tin, chocolate)

$$\left(\frac{1}{2} \times \frac{3}{10}\right) + \left(\frac{1}{2} \times \frac{1}{10}\right)$$

$$= \frac{4}{20} = (0.2)$$
(M1)(M1)(M1)
$$(A1) \qquad 4$$

[15]

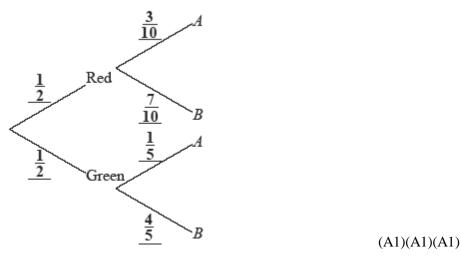
4. (a)

$$a = 0.05$$
 (A1)
 $b = 0.02$ (A1)
 $c = 0.45$ (A1) (C3)

(b)
$$0.95 \times 0.98 = 0.931$$
 (M1)(A1) (C2)

(c)
$$0.95 \times 0.02 + 0.05 \times 0.45$$
 (M1)(M1)
= 0.0415 (A1) (C3)

5. (a) (i)
$$a = 0 \left(\frac{0}{4}\right)$$
 (A1)


(ii)
$$b = \frac{3}{4} (0.75, 75\%)$$
 (A2)(G2)

(iii)
$$\frac{4}{5} \times \frac{3}{4}$$
 (M1)(A1)

$$\frac{12}{20} \left(\frac{3}{5}, 0.6, 60\% \right)$$
 (A1)(ft)(G2)

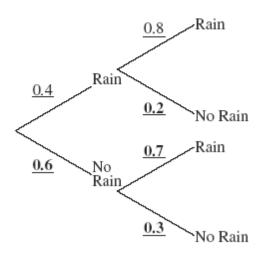
Note: Award (M1) for multiplying two probabilities, (A1) for using their probabilities, (A1) for answer.

Note: Award (A1) for each pair.

(c) (i)
$$\frac{1}{2} \times \frac{3}{10} + \frac{1}{2} \times \frac{1}{5}$$
 (M1)(M1)

$$= \frac{5}{20} \left(\frac{1}{4}, 0.25, 25\% \right) \tag{A1)(ft)(G2)}$$

Note: Award (M1) for two products seen with numbers from the problem, (M1) for adding two products. Follow through from their tree diagram.


(ii)
$$\frac{\frac{1}{2} \times \frac{3}{10}}{\frac{1}{4}}$$

$$= \frac{3}{5} (0.6, 60\%)$$
(M1)(A1)
(A1)(ft)(G2)

Note: Award (M1) for substituted conditional probability formula, (A1) for correct substitution. Follow through from their part (b) and part (c) (i).

6. (a)

Today Tomorrow

(A1)(A1)(A1) (C3)

Note: Award (A1) for each correct pair.

(b) $0.4 \times 0.8 + 0.6 \times 0.7$

(A1)(ft)(M1)

Notes: Award (A1)(ft) for two consistent products from tree diagram, (M1) for addition of their products. Follow through from their tree diagram provided all probabilities are between 0 and 1.

= 0.74

(A1)(ft) (C3)

7. (a) 12

(A2) (C2)

(b) $\frac{3}{12} = \frac{1}{4}$ or 25%

(A2) (C2)

(c) $\frac{2}{12} = \frac{1}{6}$ or 16.7% (3 s.f.)

(A2) (C2)

(d) $\frac{4}{12} = \frac{1}{3}$ or 33.3% (3 s.f.)

(A2) (C2)

[8]

[6]

8. (a)
$$\frac{4}{9}$$
 (A2)

(b)
$$\frac{2}{9}$$
 (A2)

[4]

9. Accept all answers given as percentages. If a correct fraction is seen as answer, ignore subsequent cancellations or decimal reductions (including AP's) if incorrect.

Note In each of (a)(i), (a)(iii), (b)(i) and (b)(ii) award (A1) for numerator and (A1) for denominator. Ft if the denominator is incorrect.

(a) (i)
$$P(\text{shady}) = \frac{32}{60} \left(= \frac{8}{15} \text{ or } 0.533 \right)$$
 (A1)(A1)

Note: Award (A1) for numerator, (A1) for denominator.

(ii) P(dark and low growth rate) =
$$\frac{8}{60} \left(= \frac{2}{15} \text{ or } 0.133 \right)$$
 (A1)

(iii)
$$P(\text{not dark}) = \frac{60-11}{60} = \frac{49}{60} (= 0.817)$$
 (A1)(A1) 5

(b) (i) P (high growth rate or dark environment)

$$= \frac{11+25-6}{60} \left(\text{or} \frac{8+14+8}{60} \right) = \frac{30}{60} \left(= \frac{1}{2} \text{ or } 0.5 \right)$$
 (A1)(A1)

(ii) P (in light, given high growth rate) =
$$\frac{8}{25}$$
 (= 0.32) (A1)(A1) 4

(c) (i)
$$P(CC) = \frac{8}{60} \times \frac{7}{59} = \frac{56}{3540} \left(= \frac{14}{885} = 0.0158 \right)$$
 (M1)(A1) or (G2)

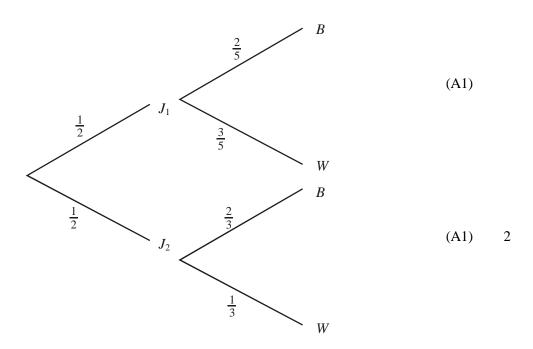
Note: Award (M1) for multiplication of two fractions, (A1) for the answer.

$$\frac{23}{60} \times \frac{22}{59}$$

OR
$$\frac{15}{60} \times \frac{14}{59} + \frac{15}{60} \times \frac{8}{59} + \frac{8}{60} \times \frac{15}{59} + \frac{8}{60} \times \frac{7}{59}$$

OR
$$1 - \left(\frac{37}{60} \times \frac{36}{59} + \frac{37}{60} \times \frac{15}{59} + \frac{15}{60} \times \frac{37}{59} + \frac{37}{60} \times \frac{8}{59} + \frac{8}{60} \times \frac{37}{59}\right)$$
 (M1)(A1)

$$=\frac{506}{3540}\left(\text{or}\,\frac{253}{1770}\text{ or}\,0.143\right) \tag{A1}$$


or (G3) 5

Note: If =
$$\frac{23}{60} \times \frac{22}{59}$$
 is doubled, award (M1)(A0)(A0).

If non-replacement is treated incorrectly in (i), ft to (ii) if consistent

[14]

10. (a)

(b)
$$P(J_1 \cap W) = \left(\frac{1}{2}\right)\left(\frac{3}{5}\right), P(J_2 \cap W) = \left(\frac{1}{2}\right)\left(\frac{1}{3}\right)$$
 (M1)

Note: Award (M1) for either correct.

$$P(W) = \frac{3}{10} + \frac{1}{6} \tag{M1}$$

$$= \frac{7}{15} or 0.467 (3 \text{ s.f.}) or 46.7\% (3 \text{ s.f.})$$
(A1) 3

(c)
$$P(J_1 \cap W \cap W) = \left(\frac{1}{2}\right)\left(\frac{3}{5}\right)\left(\frac{2}{4}\right), P(J_2 \cap W \cap W) = 0$$
 (M1)

$$P(W \cap W) = \frac{3}{20} + 0$$

$$= \frac{3}{20} \text{ or } 0.15 \text{ or } 15\% \tag{A1}$$

11. (a) For solving for $P(A \cap B)$ from the formula in their tables (M1) $P(A \cap B) = 0.2$ (A1) (C2)

(b) Because $0.4 \times 0.65 \neq 0.2$ need to see the numbers, not just a statement (R1) Therefore no, not independent (A1) (C2)

Note: Cannot award (A1) if (R1) not awarded.

(c) Because $P(A \cap B) \neq 0$ (R1) Not mutually exclusive (A1) (C2)

Note: Cannot award (A1) if (R1) not awarded.

[6]

[7]